Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Thermodynamics and kinetics of non-autonomous phase formation in nanostructured materials with variable functional properties

https://doi.org/10.17586/2220-8054-2018-9-5-641-662

Abstract

The review addresses physico-chemical aspects of interaction between macro-, micro- and nano- structured units of matter with the analysis of interface and grain boundary entities (nonautonomous phases) mechanisms and formation, as well as methods of their control in order to achieve the desired functional properties of nanostructured materials. Construction of these materials involves identification of thermodynamic and kinetic regularities in the organization processes, state and genesis parameters of nonautonomous phases formed as specific nanosized structures in a limited space between the macroscopic volume phases and with the limited amount of substance, which differ significantly on their properties, structure and composition from the appropriate characteristics of volume phases. Studying them is based on the application and development of theoretical and experimental methods of non-equilibrium thermodynamics, chemical kinetics, nonlinear dynamics and fractal analysis to determine the conditions of self-organization or materials directed synthesis with a high content of nonautonomous phases. 

About the Authors

A. N. Kovalenko
Ioffe Institute
Russian Federation

26 Politekhnicheskaya, St. Petersburg 194021



E. A. Tugova
Ioffe Institute; St. Petersburg Electrotechnical University “LETI”
Russian Federation

26 Politekhnicheskaya, St. Petersburg 194021; ul. Professora Popova 5, St. Petersburg 197376



References

1. Almjasheva O.V., Gusarov V.V. The role of non-autonomous state in the formation of nanomaterials structure and properties. In Nanomaterials: Properties and Potential Applications, Moscow, Nauchnyi Mir, 2014, P. 384–409 (in Russian).

2. Miyazaki C.M., Riul A. Low-Dimensional Systems: Nanoparticles. Nanostructures, 2017, 5, P. 125–146.

3. Rempel A.A. Nanotechnologies. Properties and applications of nanostructured materials. Russ. Chem. Rev., 2007, 76 (5), P. 435–461.

4. Vance M.E., Kuiken T., et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. J. Nanotechnol., 2015, 6 (1), P. 1769–1780.

5. Byrappa K., Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 2007, 53, P. 117–166.

6. Kirillova S.A., Almjashev V.I., Gusarov V.V. Phase relationships in the SiO2–TiO2 system. Russ. J. Inorg. Chem., 2011, 56 (9), P. 1464– 1471.

7. Newnham R. Size effect and nonlinear phenomena in ferroic ceramics. Editrice Iberica, Faenza, 1993, 2, P. 1–9.

8. Dahman Y. Nanoparticles (Chapter 5). Nanotechnology and Functional Materials for Engineers A volume in Micro and Nano Technologies, 2017, P. 93–119 p.

9. Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater., 2000, 48 (1), P. 1–29.

10. Kushnir S.E., Kazin P.E., Trusov L.A., Tretyakov Yu.D. Self-organization of micro- and nanoparticles in ferrofluids. Russian Chemical Reviews, 2012, 81 (6), P. 560–570.

11. Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organic-inorganic compositions. Nanosystems: Phys. Chem. Math., 2017, 8 (4), P. 476–502

12. Egorysheva A.V., Kuvshinova T.B., et al. Synthesis of high-purity nanocrystalline BiFeO3. Inorganic Materials, 2013, 49 (3), P. 310–314.

13. Popkov V.I., Almjasheva O.V., et al. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. Journal of Materials Science: Materials in Electronics, 2017, 28 (10), P. 163–170.

14. Mahalakshmi S., Srinivasa Manja K., Nithiyanantham S. Electrical properties of nanophase ferrites doped with rare earth ions. J. Supercond. Nov. Magn., 2014, 27 (9), P. 2083–2088.

15. Lomanova N.A., Gusarov V.V. Effect of surface melting on the formation and growth of nanocrystals in the Bi2O3–Fe2O3 system. Russ. J. Gen. Chem., 2014, 83 (12) P. 2251–2253.

16. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G. Solution-combustion synthesis of MZrO3 zirconates (M = Ca, Sr, Ba) in open reactor: thermodynamic analysis and experiment. International Journal of Self-Propagating High-Temperature Synthesis, 2017, 26 (2), P. 93–101.

17. Krasilin A.A., Gusarov V.V. Control over morphology of magnesium-aluminum hydrosilicate nanoscrolls. Russ. J. Appl. Chem., 2015, 88, P. 1928–1935.

18. Bandyopadhyay A.K. Nano Materials. New Age International (P) Ltd., Publishers, New Delhi, 2008, 321 p.

19. Arkhipov D.I., Osmolovskaya O.M., et al. Optimization of CrO2 magnetic characteristics in the process of hydrothermal synthesis using nucleating agents of complex structure. Russ. J. Gen. Chem., 2016, 86 (4), P. 983–985.

20. Sadovnikov S.I., Rempel A.A., Gusev A.I. Nanostructured silver sulfide: synthesis of various forms and their application. Russ. Chem. Reviews, 2018, 87 (4), P. 303–327.

21. Aruna S.T., Mukasyan A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci., 2008, 12 (3–4), P. 44–50.

22. Gonzalez-Cortes S.L., Imbert F.E. Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A Gen., 2013, 452, P. 117–131.

23. Karn B., Kuiken T., Otto M. Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks. Environ. Health Perspect, 2009, 117 (12), P. 1823–1831.

24. Lee J., Mahendra S., Alvarez P.J.J. Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. ACS Nano, 2010, 4 (7), P. 3580–3590.

25. Coutinho P.V., Cunha F., Barrozo P. Structural, vibrational and magnetic properties of the orthoferrites LaFeO3 and YFeO3: A comparative study. Solid State Communications, 2017, 252, P. 59–63.

26. L’vov P.E., Svetukhin V.V. Thermodynamics of the phase equilibrium of multicomponent solid solutions containing nano-sized precipitates of the second phase. Physics of the Solid State, 2013, 55 (11), P. 2374–2380.

27. Xu D., Johnson W.L. Geometric model for the critical-value problem of nucleation phenomena containing the size effect of nucleating agent. Phys. Rev. B, 2005, 72, 052101.

28. Khambaty S., Larson M.A. Crystal regeneration and growth of small crystals in contact nucleation. I&EC Fundamentals, 1978, 17 (3), P. 160–165.

29. Tauson V.L., Akimov V.V. Effect of crystallite size on solid state miscibility: applications to the pyrite–cattierite system. Gochimica et Cosmocimica Acta, 1991, 55 (10), P. 2851–2859.

30. Murdoch H.A., Schuh C.A. Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater, 2013, 61 (6), P. 2121–2132.

31. Shmyt’ko I.M., Ganeeva G.R., Aronin A.S. Influence of grain boundaries on the formation of new structural states in simple rare-earth oxides. Physics of the Solid State, 2015, 57 (1), P. 136–141.

32. Tsoga A., Nicolopoulos P. Surface and grain-boundary energies in yttria stabilized zirconia (YSZ –8 mol %). J. Mater. Sci., 1996, 31 (20), P. 5409–5413.

33. Vasiliev A.L., Poyato R., Padture N.P. Singlewall carbon nanotubes at ceramic grain boundaries. Scripta Mater., 2007, 56 , P. 461–463.

34. Ebeling W., Engel A., Feistel R. Physik der Evolutionsprozesse. Akademie-Verlag, Berlin, 1990, 371 p.

35. Saber M., Kotan H., Koch C.C., Scattergood R.O. Thermodynamic stabilization of nanocrystalline binary alloys. J. Appl. Phys., 2013, 113, 063515.

36. Rodionov I.A, Zvereva I.A. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions. Russ. Chem. Rev., 2016, 85 (3) P. 248–279.

37. Bugrov A.N., Rodionov I.A., et al. Photocatalytic activity and luminescent properties of Y, Eu, Tb, Sm and Er-doped ZrO2 nanoparticles obtained by hydrothermal method. Int. J. Nanotechnology, 2016, 13 (1/2/3), P. 147–157.

38. De Prado N.T., Oliveir L.C.A. Nanostructured niobium oxide synthetized by a new route using hydrothermal treatment: High efficiency inoxidation reactions. Applied Catalysis B: Environmental, 2017, 205, P. 481–488.

39. Yang Q., Hu H., Wang S.S. Preparation and desulfurization activity of nano-CeO2/γ-Al2O3 catalysts. Rare Met., 2018, 37, P. 554–560.

40. Al’myasheva O.V, Vlasov E.A., Khabenskii V.B., Gusarov V.V. Thermal stability and catalytic properties of the composite amorphous Al2O3-nanocrystals ZrO2. Russ. J. Appl. Chem., 2009, 82 (2) P. 217–221.

41. Livage J. Sol–gel synthesis of heterogeneous catalysts from aqueous solutions. Catalysis Today, 1998, 41 (1–3), P. 3–19.

42. Li X., Tang C.J., et al. Controllable synthesis of pure-phase rare-earth orthoferrites hollow spheres with a porous shell and their catalytic performance for the CO+NO reaction. Chem. Mater., 2010, 22, P. 4879–4889.

43. Grabowska E. Selected perovskite oxides: Characterization, preparation and photocatalytic properties – A review. Applied Catalysis B: Environmental, 2016, 186, P. 97–126.

44. Iglesia E., Barton D.G., et al. Bifunctional pathways in catalysis by solid acids and bases. Catalysis Today, 1997, 38 (3), P. 339–360.

45. Chen X., Liang S.-J., et al. Self-propagating combustion synthesis of nanocrystalline yttrium iron oxide solid solution photocatalysts. Chinese J. Inorg. Chem., 2009, 25 (11), P. 1922–1927.

46. Niu X.S., Li H.H., Liu G.G. Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd). J. Mol. Catal. A: Chem., 2005, 232 (1–2), P. 89–93.

47. Wu R., Xie P., et al. Hydrothermally prepared Cr2O3–ZrO2 as a novel efficient catalyst for dehydrogenation of propane with CO2. Catalysis Communications, 2013, 39, P. 20–23.

48. Lee J., Jeon H., et al. Morphology-dependent phase transformation of γ-Al2O3. Applied Catalysis A: General, 2015, 500, P. 58–60.

49. Falconer K.J. Fractal geometry. Mathematical foundations and applications. John Wiley & Sons, New York, 1990, 337 p.

50. Lau K.-S., Ngai S.-M. Multifractal measures and a weak separation condition. Advances in mathematics, 1999, 141, P. 45–96.

51. Ni H., Zhang L., et al. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. EarthScience Reviews, 2017, 167, P. 62–71.

52. Kefeni K.K., Msagati T.A.M., Mamba B.B. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Materials Science and Engineering: B, 2017, 215, P. 37–55.

53. Ahmad T., Lone I.H., et al. Multifunctional properties and applications of yttrium ferrite nanoparticles prepared by citrate precursor route. Materials & Design, 2017, 126, P. 331–338.

54. Karouia F., Boualleg M., Digne M., Alphonse P. The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation. Advanced Powder Technology, 2016, 27 (4), P. 1814–1820.

55. Zhuravlev V.D., Lobachevskaya N.I., et al. New Vanadium Germanium Garnets. Doklady Chemistry, 2018, 479 (2), P. 45–48.

56. Nakayama S. LaFeO3 perovskite-type oxide prepared by oxide mixing, co-precipitation and complex synthesis methods. Journal of Material science, 2011, 36, P. 5643–5648.

57. Hakuta Y., Hayashi H., Arai K. Fine particle formation using supercritical fluids. Current Opinion in Solid State and Materials Science, 2003, 7 (4–5), P. 341–351.

58. Racu A.V., Ursu D.H., et al. Direct low temperature hydrothermal synthesis of YFeO3 microcrystals. Mater. Lett., 2015, 140, P. 107–110.

59. Tugova E.A., Zvereva I.A. Formation Mechanism of GdFeO3 nanoparticles under the hydrothermal conditions. Nanosystems: Phys. Chem. Math., 2013, 4 (6), P. 851–856.

60. Chislova, I.V., Matveeva A.A., Volkova A.V., Zvereva I.A. Sol-gel synthesis of nanostructured perovskite-like gadolinium ferrites. Glass Phys. Chem., 2011, 37 (6), P. 653–660.

61. Mukasyan A.S., Rogachev A.S. Combustion synthesis: mechanically induced nanostructured materials. J. Mater. Sci., 2017, 52, P. 11826– 11833.

62. Komlev A.A., Vilezhaninov E.F. Glycine-nitrate combustion synthesis of nanopowders based on nonstoichiometric magnesium-aluminum spinel. Russ. J. Appl. Chem., 2013, 86 (9) P. 1344–1350.

63. Bubnova R.S., Firsova V.A., Volkov S.N., Filatov S.K. Rietveldtotensor: Program for processing powder X-Ray diffraction data under variable conditions. Glass Phys. Chem., 2018, 44 (1), P. 33–40.

64. Berezhnaya M.V., Al’myasheva O.V., et al. Sol-gel synthesis and properties of Y1−xBaxFeO3 nanocrystals. Russ. J. Gen. Chem., 2018, 88 (4), P. 626–631.

65. Livage J., Sanchez C. Towards a soft and biomimetic nanochemistry. Actualite Chimique, 2005, 290–291, P. 72–76.

66. Van-der-Vaal’s I.D., Konstamm F. Lehrbuch der Thermodynamik. Maas and van Suchtelen. Leipzig, 1908, 1, 207.

67. Samsonov V.M., Murav’ev S.D., Bazulev A.N. Surface characteristics, structure and stability of nanosized particles. Russ. J. Phys. Chem. A, 2000, 74 (11), P. 1791–1795.

68. Magomedov M.N. Dependence of the surface energy on the size and shape of a nanocrystal. Physics of the Solid State, 2004, 46 (5), P. 954–968.

69. Tolman R.C. The effect of droplet size on surface tension. J. Chem. Phys. A, 1949, 17 (203), P. 333–337.

70. Bykov T.V., Shchekin A.K. Surface tension, tolman length, and effective rigidity constant in the surface layer of a drop with a large radius of curvature. Inorg. Mater., 1999, 35 (6), P. 641–644.

71. Krasnenko T.I., Rotermel M.V., Samigullina R.F. Stabilizing the associated non-autonomous phase upon thermal expansion of Zn2V2O7. Russ. J. Inorg. Chem., 2017, 62 (4), P. 413–417.

72. Tovbin Yu.K. Lower size boundary for the applicability of thermodynamics. Russ. J. Phys. Chem. A, 2012, 86 (9), P. 1356–1369.

73. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Phys. Chem. Math., 2014, 5 (3), P. 405–417.

74. Neiman A.Ya., Uvarov N.F., Pestereva N.N. Solid state surface and interface spreading: An experimental study. Solid State Ionics, 2007, 177 (39–40), P. 3361–3369.

75. Gusarov V.V. The thermal effect of melting in polycrystalline systems. Thermochim. Acta, 1995. 256 (2), P. 467–472.

76. Andrievski R.A. Review of thermal stability of nanomaterials. J. Mater. Sci., 2014, 49 (4), P. 1449–1460.

77. Zhao M., Jiang Q. Melting and surface melting of low–dimensional in crystals. Solid State Communication, 2004, 130, P. 37–39.

78. Gusarov V.V. Statics and dynamics of systems based on polycrystalline refractory oxides. Sc. D. Thesis, St. Petersburg State Technological Institute (Technical University), St. Petersburg, 1996, 44 p. (in Russian).

79. Gusarov V.V., Suvorov S.A. Transformations of nonautonomous phases and densification of polycrystalline systems. Journal of Applied Chemistry of the USSR, 1992, 65 (7), P. 1227–1235.

80. Gusarov V.V. Kinetic features of heat effect of melting in polycrystalline systems. Russ. J. Appl. Chemistry, 1994, 67 (3), P. 364–366.

81. Gusarov V.V., Suvorov S.A. Rapid thermal packing of materials. Russ. J. Appl. Chem., 1993, 66 (3), P. 431–437

82. Gusarov V.V., Suvorov S.A. Thickness of 2-dimentional nonautonomous phases in local equilibrium polycrystalline systems based on a single bulk phase. Russ. J. Appl. Chem., 1993, 66 (7), P. 1212–1216.

83. Kikuchi R., Cahn J.W. Grain boundary melting transition in a two dimensional lattice gas model. Phys. Rev. B, 1980, 21 (5), P. 1893–1897.

84. Gusarov V.V., Popov I.Yu. Flows in two-dimensional nonautonomous phases in polycrystalline systems. Nuovo Cim. D, 1996, 18 (7), P. 799–805.

85. Levitas V.I. Effect of the ratio of two nanosize parameters on the phase transformations. Scripta Materialia, 2018, 192, P. 155–162.

86. Frenken J.W.M, van der Veen J.F. Observation of surface melting. Phys. Rev. Lett., 1985, 54, P. 134–141.

87. Dash J.G. Surface melting. Contemp. Phys., 1989, 30 (2), P. 89–100.

88. Zhou F., Lee J., Dallek S., Lavernia E.J. High grain size stability of nanocrystalline Al prepared by mechanical attrition. J. Mater. Res., 2001, 16, P. 3451–3458.

89. Zhou F., Lee J., Lavernia E.J. Grain growth kinetics of a mechanically milled nanocrystalline Al. Scripta Materialia, 2001, 44 (8–9), P. 2013–2017.

90. Rao C.N.R. Kinetics and thermodynamics of the crystal structure transformation of spectroscopically pure anatase to rutile. Can. J. Chem., 1961, 39, P. 498–500.

91. Etters R.D., Kaelberer J. Character of melting transition in small atomic aggregates. J. of Chemical Physics, 1977, 66 (11), P. 5112–5116.

92. Zhou Z., Guo L., et al. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. Journal of Alloys and Compounds, 2014, 583, P. 21–31.

93. Mendona E.C., Tenorio M.A., et al. Intrinsic dependence of the magnetic properties of CoFe ´ 2O4 nanoparticles prepared via chemical methods with addition of chelating agents. J. Magn. Magn. Mater., 2015, 395, P. 345–349.

94. Davar F., Hassankhani A., Loghman-Estarki M.R. Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method. Ceramics International, 2013, 39 (3), P. 2933–2941.

95. Bachina A., Ivanov V.A., Popkov V.I. Peculiarities of LaFeO3 nanocrystals formation via glycine-nitrate combustion. Nanosystems: Phys. Chem. Math., 2017, 8 (5), P. 647–653.

96. Phokha S., Pinitsoontorn S., Maensiri S., Rujirawat S. Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J. Sol-Gel science and technology, 2014, 71 (2), P. 333–341.

97. Proskurina O.V., Tomkovich M.V., et al. Formation of nanocrystalline BiFeO3 under hydrothermal conditions. Russ. J. Gen. Chem., 2017, 87 (11), P. 2507–2515.

98. Dyachenko S.V., Martinson K.D., Cherepkova I.A. Particle size, morphology, and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type, produced by glycine-nitrate combustion. Russ. J. Appl. Chem., 2016, 89 (4), P. 417–421.

99. Martinson K.D., Kondrashkova I.S., Popkov V.I. Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method. Russ. J. Appl. Chem., 2017, 90 (8), P. 980–985.

100. Kurdyukov D.A, Eurov D.A., et al. High-surface area spherical micro-mesoporous silica particles. Microporous Mesoporous Mater., 2016, 223, P. 225–229.

101. Dideikin A.T., Aleksenskii A.E., et al. Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon, 2017, 122, P. 737–745.

102. Van-der-Vaal’s I.D., Konstamm F. Course of Thermostatics. Moscow, ONTI, 1936, 452 p. (in Russian).

103. Defay R., Prigogine I. Tension superficielle et adsorption. Desoer, Liege, 1951, 295 p.

104. Defay R., Prigogine I., Sanfeld A. Surface thermodynamics. J. Colloid Interface Sci., 1977, 58 (3), P. 498–510.

105. Al’myasheva O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russ. J. Gen. Chem., 2010, 80 (3), P. 385–390.

106. Al’myasheva O.V., Gusarov V.V. Nucleation in media in which nanoparticles of another phase are distributed. Dokl. Phys. Chem., 2009, 424 (2), P. 43–45.

107. Popkov V.I., Almjasheva O.V., Gusarov V.V. The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russ. J. Appl. Chem., 2014, 87 (10), P. 1417–1421.

108. Bejan A. Review: J.D. Lewins, Thermodynamics: Frontiers and Foundations. 2009. URL: www.oecd-nea.org/dbprog/documents/Lewins book review.pdf.

109. Hansen R.S. Surface and colloid science. Wiley, New York, 1969, 1, 260 p.

110. Rusanov A.I. Phase equilibria and surface phenomena. Khimiya, Leningrad (1967). 388 p. (in Russian).

111. Rusanov A.I. Thermodynamic fundamentals of mechanochemistry. Nauka, St. Petersburg, 2006, 221 p. (in Russian).

112. Grinfeld M.A. Methods of continuum mechanics in theory of phase transformations. Nauka, Moscow, 1990, 312 p. (in Russian).

113. Fletcher N.H. Surface structure of water and ice. Phil. Mag., 1962, 7, P. 255–259.

114. Gilpin R.R. Wire regelation at low temperatures. Journal of Colloid and Interface Science, 1980, 77 (2), P. 435–448.

115. Clarke D.R. On the equilibrium thickness of intergranular glass phases in ceramic materials. J. Am. Ceram. Soc., 1987, 70, P. 15–22.

116. Dash J.G. Thermomolecular pressure in surface melting: Motivation for frost heave. Science, 1989, 246, P. 1591–1593.

117. Gusarov V.V., Suvorov S.A. Melting points of locally equilibrium surface phases in polycrystalline systems based on a single volume phase. J. Appl. Chem. of the USSR, 1990, 63 (8), P. 1560–1565.

118. Gusarov V.V. Fast solid-phase chemical reactions. Zhurnal Obshchei Khimii, 1997, 67 (12), P. 1959–1964.

119. Almjasheva O.V. Heat-stimulated transformation of zirconium dioxide nanocrystals produced under hydrothermal conditions. Nanosystems: Phys. Chem. Math., 2015, 6 (5), P. 697–703.

120. Vasilevskay A.K., Almjasheva O.V., Gusarov V.V. Peculiarities of structural transformations in zirconia nanocrystals. Journal of Nanoparticle Research, 2016, 18, P. 188–198.

121. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2–H2O system. Nanosystems: Phys. Chem. Math., 2016, 7 (6), P. 1031–1049.

122. Murin I.V., Smirnov V.M., et al. Structural chemical transformations of α-Fe2O3 upon transport reduction. Solid State Ionics, 2000, 133, P. 203–210.

123. Zhang H., Banfield J. New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. American Mineralogist, 1999, 84 (4), P. 528–535.

124. Bascom W.D., Cottington R.L., Singleterry C.R. Dynamic surface phenomena in the spontaneous spreading of oils on solids. American Chemical Society, Washington, DC, 1964, P. 355–379.

125. Yannis K., Tassos B. Stability and dynamics of nonautonomous systems with pulsed nonlinearity. Phys. Rev. E, 2013, 88 (4), 042924.

126. Gilpin R.R. A model for the prediction of ice lensing and frost heave in soils. Water Resour. Res., 1980, 16 (5), P. 918–930.

127. Nair R.R., Wu H.A., et al. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 2012, 335, P. 442–444.

128. Murase Y., Kato E. Role of water vapour in crystallite growth and tetragonal – monoclinic phasetransformation of ZrO2. J. Am. Cream. Soc., 1983, 66 (3), P. 196–200.

129. Wood G.R., Walton A.G. Homogeneous nucleation kinetics of ice from water. J. Appl. Phys., 1970, 41 (7), P. 3027–3036.

130. Findenegg G.H., Jhnert S., Akcakayiran D., Schreiber A. Freezing and melting of water confined in silica nanopores. Chemphyschem., 2008., 9 (18), P. 2651–2659.

131. Lee Penn R., Banfield J. Oriented attachment and growth, twinning, polytypism and formation of metastable phases; insights from nanocrystalline TiO2. American Mineralogist, 1998, 83 (9–10), P. 1077–1082.

132. Grulke E.A., Yamamoto K., et al. Size and shape distributions of primary crystallites in titania aggregates. Advanced Powder Technology, 2017, 28 (7), P. 1647–1659.

133. Tugova E.A., Karpov O.N. Nanocrystalline perovskite-like oxides formation in Ln2O3 – Fe2O3 – H2O (Ln = La, Gd) systems. Nanosystems: Phys. Chem. Math., 2014, 5 (6), P. 854–860.

134. Reiss H., Katz J.L., Cohen E.R. Translation-rotation paradox in the theory of nucleation. J. Chem. Phys., 1968, 48 (12), P. 5553–5560.

135. Blinova I.V., Gusarov V.V., Popov I.Yu. A model of irregular impurity at the surface of nanoparticle and catalytic activity. Commun. Theor. Phis., 2012, 58 (1), P. 55–58.

136. Tammann G. Uber die abhngigkeit der zahl der kerne, welche sich in verschiedenen unterkhltenflssigkeiten bilden, von der temperature. ¨ Zeit. f. Physik. Chemie, 1898, 25, P. 441.

137. Tammann G. Aggregatzustande ¨ . Verlag von Leopold Voss, Leipzig, 1922, 237 p.

138. Gusarov V.V., Suvorov S.A. Autocatalytic solid-phase reaction of chrysoberyl formation. Zhurnal obshchei Khimii, 1988, 58 (4), P. 932– 934.

139. Gusarov V.V., Suvorov S.A. Transformation and transport processes in polycrystalline systems and creep of materials. Journal of Applied Chemistry of the USSR, 1992, 65 (10), P. 1961–1964 (in Russian).

140. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.A. Thermally activated transformations of 2D nonautonomous phases and contradiction of polycrystalline oxide materials. Inorganic Materials, 1995, 31 (3), P. 320–323.

141. Zvereva I.A., Otrepina I.V., et al. Mechanism of formation of the complex oxide Gd2SrFe2O7. Russ. J. Gen. Chem., 2007, 77 (6), P. 973–978.

142. Tugova E.A., Gusarov V.V. Peculiarities of layered perovskite-related GdSrFeO4 compound solid state synthesis. Journal of Alloys and Compounds, 2011, 509 (5), P. 1523–1528.

143. Chupakhina T.I., Melkozerova M.A., Bazuev G.V. Phase formation features and magnetic properties of complex oxides in the systems Sr–Co–M–O (M = Zn, Cu). Russ. J. Inorg. Chem., 2013, 58 (3), P. 253–258.

144. Tugova E.A. New DySrAlO4 compound synthesis and formation process correlations for LnSrAlO4 (Ln = Nd, Gd, Dy) series. Acta Metallurgica Sinica (English Letters),2016, 29(5), P. 450–456.

145. Morozov M.I., Lomanova N.A., Gusarov V.V. Specific features of BiFeO3 formation in a mixture of bismuth (III) and iron (III) oxides. Russ. J. Gen. Chem., 2003, 73 (11), P. 1676–1680.

146. Tugova E.A., Gusarov V.V. Processing stages of Gd2Sr(Al1−xFex)2O7 series. Rare Metals, 2014, 33 (1), P. 47–53.

147. Boldyrev V.V. Reactivity of solids. J. of Thermal Analysis, 199, 40, P. 1041– 1062.

148. Baranchikov A.Ye., Ivanov V.K., Tretyakov Yu.D. Kinetics and mechanism of nickel ferrite formation under high temperature ultrasonic treatment. Ultrasonics Sonochemistry, 2007, 14 (2), P. 131–134.

149. Tretyakov Yu.D. Self-organisation processes in the chemistry of materials. Russ. Chem. Rev., 2003, 72 (8), P. 651–679.

150. Kalinin S.V., Vertegel A.A., Oleynikov N.N., Tretyakov Y.D. Kinetics of solid state reactions with fractal reagent. J. Mater. Synth. Process, 1998, 6 (5), P. 305–309.

151. Khvostova L.V., Volkova N.E., Gavrilova L.Ya, Cherepanov V.A. Crystal structure, oxygen nonstoichiometry and properties of novel Ruddlesden-Popper phase Sm1.8Sr1.2Fe2O7-δ. Materials Letters, 2018, 213, P. 158–161.

152. Yi L., Liu X.Q., Chen X.M. Crystal structure and infrared reflection spectra of SrLn2Al2O7 (Ln = La, Nd, Sm) microwave dielectric ceramics. Int. J. Appl. Ceram. Technol., 2015, 12 (3), P. E33—E40.

153. Chupakhina T.I., Mel’nikova N.V., Yakovleva E.A., Nikitina Yu.A. La1.8Sr0.2Ni0.8M0.2O4 (M = Fe, Co, or Cu) complex oxides: synthesis, structural characterization, and dielectric properties. Russ. J. Inorg. Chem., 2018, 63 (2), P. 141–148.

154. Fan X. Ch., Chen X. M., Liu X. Qi. Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study. Chem. Mater., 2008, 20, P. 4092–4098.

155. Tugova E.A. P/RS intergrowth type phases in the Ln2O3–MO–Al2O3 systems. Russ. J. Gen. Chem., 2016, 86 (11), P. 2410–2417.

156. Karita R., Kusaba H., Sasaki K., Teraoka Y. Superiority of nitrate decomposition method for synthesis of K2NiF4-type LaxSr2−xMnO4 catalysts. Catalysis Today, 2007, 126, P. 471–475.

157. Zhou J., Chen Y., Chen G., Wu K., Cheng Y. Evaluation of LaxSr2−xFeO4 layered perovskite as potential electrode materials for symmetrical solid oxide fuel cells. Journal of Alloys and Compounds, 2015, 647, P. 778–783.

158. Liu Y.Y., Chen X.M., Liu X.Q. Magnetic properties and magnetoresistance of polycrystalline SrLaCoO4. Solid State Communications, 2005, 136, P. 576–579.

159. Liu X.Q., L ¨u X.J., Chen X.M., L¨u G.L. Structures and electrical conductivity of CaNdFeO4 ceramics. J. Electroceram., 2008, 21, P. 487–490.

160. Patel R., Simon Ch., Weller M.T. LnSrScO4 (Ln, La, Ce, Pr, Nd and Sm) systems and structure correlations for A2BO4 (K2NiF4) structure types. J. Solid State Chem., 2007, 180, P. 349–359.

161. Ganguli D. Cationic radius ratio and formation of K2NiF4-type compounds. J. Solid State Chem., 1979, 30, P. 353–356.

162. Tugova E.A., Klyndyuk A.I., Gusarov V.V. Synthesis of solid solutions of double layered Ruddlesden–Popper phases in the Gd2O3-SrOFe2O3-Al2O3 system. Russian Journal of Inorganic Chemistry, 2013, 58 (7), P. 848–854.

163. Tugova E.A., Bobrysheva N.P., Selyutin A.A., Gusarov V.V. Magnetic Properties of Complex Oxides Gd2SrM2O7 (M = Fe, Al). Russ. J. Gen. Chem., 2008, 78 (11), P. 2000–2001.

164. Zvereva I., Smirnov Yu., et al. Complex aluminates RE2SrAl2O7 (RE = La, Nd, Sm–Ho): Cation ordering and stability of double perovskite slab-rocksalt layer P2/RS intergrowth. J. Solid State Sci., 2003, 5, P. 343–349.

165. Chupakhina T.I., Melnikova N.V., Gyrdasova O.I. Synthesis, structural characteristics and dielectric properties of a new K2NiF4-type phase Sr2Mn0.5Ti0.5O4. Journal of Alloys and Compounds, 2016, 670, P. 105–112.

166. Chupakhina T.I, Bazuev G.V. Synthesis and magnetic properties of LaSr2CoMnO7. Russ. J. Inorg. Chem., 2008, 53 (5), P. 681–685.

167. Aksenova T.V., Vakhromeeva A.E., et al. Phase equilibria, crystal structure, oxygen nonstoichiometry and thermal expansion of complex oxides in the Nd2O3 – SrO – Fe2O3 system. J. Solid State Chem., 2017, 251, P. 70–78.

168. Feng J., Wan Ch., et al. Calculation of the thermal conductivity of L2SrAl2O7 (L = La, Nd, Sm, Eu, Gd, Dy). Phys. Rev. B, 2011, 84, 024302.

169. Tugova E.A. A comparative analysis of the processes of formation of Ruddlesden-Popper phases in the La2O3–SrO–M2O3 (M= Al, Fe) Systems. Glass Physics and Chemistry, 2009, 35 (4), P. 422–428.

170. Zvereva I.A., Tugova E.A., et al. The impact of Nd3+/La3+ substitution on the cation distribution and phase diagram in the La2SrAl2O7– Nd2SrAl2O7 system. Chimica Techno Acta, 2018, 5 (1), P. 80–85.

171. Petrosyan A.G., Popova V.F., et al. The Lu2O3–Al2O3 system: relations for equilibrium-phase and supercooled states. J. Cryst. Growth, 2006, 293, P. 74–77.

172. Zvereva I.A., Pylkina N.S., et al. Phase equilibria in the Gd2O3–SrAl2O4 system. Glass Physics and Chemistry, 2005, 31 (6), P. 808–811.

173. Popova V.F., Tugova E.A., Gusarov V.V., Zvereva I.A. Phase equilibria in the LaAlO3–LaSrAlO4 system. Glass Physics and Chemistry, 2004, 30 (6), P. 564–567.

174. Kovalenko A.N. High-temperature superconductivity: From macro- to nanoscale structures. Nanosystems: Phys. Chem. Math., 2016, 7 (6), P. 941–970.

175. Novoselov A.V., Drobot D.V. Synthesis of substrate materials based on rare-earth-containing mixed-oxide solid solutions for epitaxy of high-Tc superconductors. Inorganic Materials, 2009, 45 (6), P. 589–595.

176. Zvereva I.A., Reznitskii L.A., Filippova S.E. Thermochemical and structural aspects of the stability of lamellar structures. Russ. J. Gen. Chem., 2004, 74 (5), P. 659–662.

177. Pajaczkowska A., Novosselov A.V., Zimina G.V. On the dissociation and growth of SrLaGaO4 and SrLaAlO4 single crystals. Journal of Crystal Growth, 2001, 223, P. 169–174.

178. Smirnov Yu.E., Zvereva I.A. Cation distribution and interatomic interactions in oxides with heterovalent isomorphism: III.1 Complex aluminates LnCaAlO4 (Ln = Y, La, Nd, Gd, Ho, Er, Yb). Russ. J. Gen. Chem., 2001, 71 (6), P. 845–852.

179. Chen X.M., Xiao Y., Liu X.Q., Hu X. SrLnAlO4 (Ln Nd and Sm) microwave dielectric ceramics. Journal of Electroceramics, 2003, 10, P. 111–115.

180. Rao C.N.R., Raveau B. Transition Metal Oxides: Structure, Properties and Synthesis of Ceramic Oxides. Wiley-VCH, New York, 1998, 227 p.

181. Meskin P.E., Ivanov V.K., et al. Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders. Ultrasonics Sonochemistry, 2006, 13 (1), P. 47–53.

182. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Phys. Chem. Math., 2013, 4, P. 810–815.

183. Li Y., Xu S. Hydrothermal synthesis of lanthanide hydroxide micro/nanorods in presence of tetrabutylammonium hydroxide. Journal of Rare Earths, 2016, 34 (6), P. 618–625.

184. Gusev A.I., Kurlov A.S. Production of nanocrystalline powders by high-energy ball milling: model and experiment. Nanotechnology, 2008, 19 (26), P. 265302–265310.

185. Komarneni S., Tsuji M., Wada Y., Tamaura Y. Nanophase ferrites for CO2 greenhouse gas decomposition. J. Mater. Chem., 1997, 7 (12), P. 2339–2340.

186. Tretyakov Y.D., Oleinikov N.N., et al. Self-organization in physicochemical systems – on the path to creating novel materials. Inorg. Mater., 1990, 30 (3), P. 277–290.

187. Pomogailo A.D., Rozenberg A.S., Dzhardimalieva G.I. Thermolysis of metallopolymers and their precursors as a method for the preparation of nanocomposites. Russ. Chem. Rev., 2011, 80 (3), P. 257–292.

188. Vanetsev A.S., Tretyakov Yu.D. Microwave–assisted synthesis of individual and multicomponent oxides. Russ. Chem. Rev., 2007, 76 (5), P. 397–413.

189. Baranchikov A.Ye., Ivanov V.K., Tretyakov Yu.D. Sonochemical synthesis of inorganic materials. Russ. Chem. Rev., 2007, 76 (2), P. 133–151.

190. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special features of formation of nanocrystalline BiFeO3 via the glycinenitrate combustion method. Russ. J. Gen. Chem., 2016, 86 (10), P. 2256–2262.

191. T ¨urk M. Particle formation with supercritical fluids: challenges and limitations (Chapter 7). Elsevier, 2014, 152 p.

192. Tretyakov Yu.D., Lukashin A.V. Eliseev A.A. Synthesis of functional nanocomposites based on solid-phase nanoreactors. Russ. Chem. Rev., 2004, 73 (9), P. 899–921.

193. Krasilin A.A., Gusarov V.V. Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosystems: Phys. Chem. Math., 2017, 8, P. 620–627.

194. Korytkova E.N., Semyashkina M.P, et al. Synthesis and growth of nanotubes Mg3Si2O5(OH,F)4 composition under hydrothermal conditions. Glass Phys. Chem., 2013, 39 (3), P. 294–300.

195. Gulina L.B., Tolstoy V.P., Kasatkin I.A., Murin I.V. Facile synthesis of scandium fluoride oriented single-crystalline rods and urchin-like structures by a gas-solution interface technique. Crystengcomm., 2017, 19 (36), P. 5412–5416.

196. Komarneni S. Nanophase materials by hydrothermal, microwave-hydrothermal and microwave solvothermal methods. Current Science, 2003, 85 (12), P. 1730–1734.

197. Brinker C.J., Scherer G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego, 1990, 908 p.

198. Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO3 nanocrystals under glycine nitrate combustion formation. Journal of Crystal Growth, 2017, 467, P. 88–92.

199. Komlev A.A., Vilegzhaninov E.F., et al. Formation of spinel particles in the Mg–Al–O–N system in the combustion wave front. Bulletin of the Saint Petersburg State Institute of Technology (Technical University), 2013, 1, P. 3–6.

200. Ivleva T.P., Merganov A.G. Three–dimensional spinning waves of gasless combustion. Doklady Akademii Nauk, 2000, 371 (6), P. 753– 758.

201. Bhavani P., Rajababu C.H., et al. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method. Journal of Magnetism and Magnetic Materials, 2017, 426, P. 459–466.

202. Adachi M., Okuyama K., Seinfeld J.H. Experimental studies of ion-induced nucleation. J. Aerosol. Sci., 1992, 23 (4), P. 327–337.

203. Fedoseev V.B., Fedoseeva E.N. Size effects during phase transformations in stratifying systems. Russ. J. Phys. Chem. A, 2014, 88 (3), P. 436–441.

204. Oxtoby D.W. Nucleation of first-order phase transitions. Acc. Chem. Res., 1998, 31 (2), P. 91–97.

205. Ilhan S., Izotova S.G., Komlev A.A. Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-preciptated magnesium and iron hydroxides. Ceramics International, 2015, 41 (1), P. 577–585.

206. Gandhi A.S., Jayaram V. Plastically deforming amorphous ZrO2–Al2O3. Acta materialia, 2003, 51, P. 1641–1649.

207. Ding X.-Z., Liu X.-H. Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. J. Mater. Res., 1998, 13 (9), P. 2556–2559.

208. Lawrencaen P.J., Parker S.C. Computer simulation studies of perfect and defective surfaces in Cr2O3. J. Am. Ceram. Soc., 1988, 71 (8), P. 389–391.

209. Rebinder P.A., Shchukin E.D. Surface phenomena in solids during the course of their deformation and failure. Sov. Phys. Usp., 1973, 15 (5), P. 533–554.

210. Oxtoby D.W. Phase transitions: Catching crystals at birth. Nature, 2000, 406, P. 464–465.

211. Rotermel M.V., Krasnenko T.I., Mechanism of thermal expansion of structural modifications of zinc pyrovanadate. Crystallography Reports, 2017, 62 (5), P. 703–709.

212. Tauson V.L., Loginov B.A., Akimov V.V., Lipko S.V. Nonautonomous phases as potential sources of incompatible elements. Doklady Earth Sciences, 2006, 407 (2), P. 280–283.

213. Sdobnyakov N.Yu., Samsonov V.M. On the size dependence of surface tension in the temperature range from melting point to critical point. CEJP, 2005, 3 (2), P. 247–250.

214. Samsonov V.M., Dronnikov V.V., Mal’kov O.A. The size dependence of the melting temperature of nanocrystals. Russ. J. Phys. Chem., 2004, 78 (7), P. 1044–1047.

215. Tauson V.L., Akimov V.V. Introduction to the theory of forced equilibria: general principles, basic concepts, and definitions. Geochimica et Cosmochimica Acta, 1997, 61 (23), P. 4935–4943.

216. Summ B.D., Samsonov V.M. Concepts of Rehbinder’s school and modern theories of spreading. Colloids and surfaces a-physicochemical and engineering aspects, 1999, 160 (2), P. 63–77.

217. Kondepudi D., Prigogine I. Modern Thermodynamics. From heat engines to dissipative structures. Wiley, UK, 1998, 506 p.

218. Kovalenko A. Inner nonstationarness of energy conversion in non-equilibrium thermodynamic system. Proceedings of the Fifth Baltic Heat Transfer Conference, 21–23 September 2009, St-Petersburg, SPbGPU, 2009, P. 446–453.

219. Green S., Sengers J.V. Critical Phenomena. Proc. Conference on phenomena in the neighborhood of critical points, NBS Misc. Publ. 273, Washington, 1966, P. 1–242.

220. Kadanoff L.P. Phase Transition and Critical Phenomena. Green. Acad. Press, New York, 1976, 5, P. 2–34.

221. Widom B. Equation of state in neighborhood of the critical point. J. Chem. Phys., 1965, 43 (11), P. 255–262.

222. Sedoi V.S., Valevich V.V. Production of highly dispersed metal powders by electrical explosion in reduced-pressure nitrogen. Technical Physics Letters, 1999, 25 (7), P. 584–585.

223. Kovalenko A.N., Kalinin N.V. Thermodynamic instability of compound and formation of nanosized particles nearby the critical point of phase generating media. Nanosystems: Phys. Chem. Math., 2014, 5 (2), P. 258–293.

224. Dulnev G.N., Novikov V.V. Processes of transfer in non-uniform environments. Energoatomizdat, Leningrad, 1991, 248 p. (in Russian).

225. Menshikov M.V., Molchanov S.A., Sidorenko A.F. Theory of a perkolyation and some applications. VINITI, Moscow, 1986, 24, P. 53–110 (in Russian).

226. Burtsev V.A., Kalinin N.V. About conductivity at a stage actually explosion of conductors. Physics of extreme states. Works of the international conference “Interaction of intensive streams of energy with substance”. Chernogoloka: RAS, KBGU, 2005, P. 156–158 (in Russian).

227. Pervov V.S. Supramolecular ensembles in eutectic alloys. Russian Chemical Reviews, 2003, 72 (9), P. 759–768.

228. Pervov V.S., Mikheikin I.D., Shatilo Ya.V., Makhonina E.V. Supramolecular model of eutectics: Metastable states and structure of inorganic alloys. Russ. J. Inorg. Chem., 2007, 52 (4), P. 524–531.

229. Len G.-M. Supramolecular chemistry. Concept and prospects. Science, Novosibirsk, 1998, 334 p.

230. Pervov V.S., Manokhina E.V., Dobrokhotova Zh.V., Zotova A.E. Metastable states in inorganic systems. Inorg. Mater., 2011, 47 (13), P. 1407–1427.

231. Pervov V.S., Makhonina E.V., et al. Supramolecular model of eutectics: Functional materials based on nonautonomous phases. Inorg. Mater., 2009, 45 (12), P. 1382–1387.

232. Frenkel Ya.I., Kontorova T.A. To the theory of plastic deformation and a dvoynikovaniye. ZhETF, 1938, 8 (12), P. 1340–1348.

233. Zavragnov A.Y., Makhonina E.V., Mikheykin I.D., Pervov V.S. Supramolecular model of eutectics. Metastable structures in inorganic systems and a possibility of their functionalization. Bulletin of the RFBR, 2011, 4 (72), P. 48–54 (in Russian).

234. Lyapunova E.A., Uvarov S.V., et al. Modification of the mechanical properties of zirconium dioxide ceramics by means of multiwalled carbon nanotubes. Nanosystems: Phys. Chem. Math., 2016, 7 (1), P. 198–203.

235. Saha S., Dutta A., Mukhopadhya P.K., Sinha T.P. Dielectric relaxation and charge transport process in PrCrO3 nano-ceramic. Nanosystems: Phys. Chem. Math., 2016, 7 (4), P. 613—617.

236. Mezentseva L.P., Osipov A.V., et al. Chemical and thermal stability of phosphate ceramic matrices. Glass Phys. Chem., 2017, 43 (1), P. 83–90.

237. Bechta S.V., Krushinov E.V., et al. Phase diagram of the ZrO2–FeO system. Journal of Nuclear Materials, 2006, 348 (1–2), P. 114–121.

238. Kazin P.E., Tretyakov Yu.D. Microcomposites based on superconducting cuprates. Russ. Chem. Rev., 2003, 72 (10), P. 849–865.

239. Kenges K.M., Proskurina O.V., et al. Synthesis and properties of nanocrystalline materials based on LaPO4. Russ. J. Appl. Chem., 2017, 90 (7), P. 1047–1054.

240. Almjasheva O.V., Gusarov V.V., Kovalenko A.N., Ugolkov V.L. Nanocrystals of ZrO2 as sorption heat accumulators. Glass Phys. Chem., 2007, 33 (6), P. 587–589.

241. Matsukevich I.V., Klyndyuk A.I., et al. Thermoelectric properties of Ca3−xBixCo4O9+δ (0.0 ≤ x ≤ 1.5) ceramics. Inorg. Mater., 2016, 52 (6), P. 593–599.

242. Tretyakov Yu.D. Development of inorganic chemistry as a fundamental base for the design of new generations of functional materials. Russ. Chem. Rev., 2004, 73 (9), P. 831–846

243. Abdellahi M., Abhari A.S., Bahmanpourc M. Preparation and characterization of orthoferrite PrFeO3 nanoceramic. Ceramics International, 2016, 42 (4), P. 4637–4641.

244. Tretyakov Yu.D., Goodilin E.A. Chemical principles of preparation of metall-oxide superconductors. Russ. Chem. Rev., 2000, 69 (1), P. 1–34.

245. Pervov V.S., Ovchinnikova S.I., et al. Nanoionics: Principles of ceramic materials fabrication for electrochemical power generation. Inorg. Mater., 2016, 52 (1), P. 83–88.

246. Andrievski R.A. The role of nanoscale effects in the interaction between nanostructured materials and environments. Protection of Metals and Physical Chemistry of Surfaces, 2013, 49 (5), P. 528–540.

247. Rusanov A.I. Surface thermodynamics revisited. Surface Science Reports, 2005, 58, P. 111–239.

248. Adamson A.W., Gast A.P. Physical chemistry of surfaces. 6th ed. A Wiley-Interscience Publication, N.Y., 1997, 784 p.

249. Prigogine I., Defay R. Chemical Thermodynamics. Longmans, Green and Co., New York, 1954, 409 p.

250. Feder J. Fractals. Physics of Solids and Liquids. Plenum Press, New York, 1988, 305 p.

251. Tauson V.L., Kravtsova R.G., Grebenshchikova V.I., Lustenberg E.E. Surface typochemistry of hydrothermal pyrite: Electron spectroscopic and scanning probe microscopic data. II. Natural pyrite. Geochemistry International, 2009, 47 (3), P. 231–243.

252. Tauson V.L, Lipko S.V., Shchegolkov Yu.V. Surface nanoscale relief of mineral crystals and its relation to nonautonomous phase formation. Crystallography Reports, 2009, 54 (7), P. 1219–1227.

253. Roldughin V.I. Self-assembly of nanoparticles at interfaces. Russ. Chem. Rev., 2004, 73 (2), P. 115–145.

254. Kuzmenko A.P., Chakov V.V., Aung Ch.N. Operated self-assembly micro and nanostructures. Nanotechnics, 2013, 4 (36), P. 30–31 (in Russian).

255. Paradisi P., Cesari R., Mainardi F., Tampieri F. The fractional Fick’s law for non-local transport processes. Physica A, 2001, 293, P. 130–142.

256. Vlad M.O. Fractional diffusion on fractals: Self-similar stationare solutions in a force field derived from a logarithmic potential. Chaos, Solutions & Fractals, 1994, 4 (2), P. 191–199.

257. Taukenova F.I., Shkhanukov–Lafishev M.Kh. Difference methods for solving boundary value problems for fractional differential equations. Computational Mathematics and Mathematical Physics, 2006, 46 (10), P. 1785–1795.

258. Pleskachevsky Yu.M., Chigareva Yu.A. Distribution of temperature in a layer with fractal structure, 2015, URL: https://journals.bntu.by/handle/data/14552.

259. Uchaykin V.V. Automodel abnormal diffusion and steady laws. Phys. Usp., 2003, 46 (8) P. 821–849.

260. Meylanov R.P., Shabanova M.R. The thermoconductivity equation for areas with fractal structure. Modern high technologies, 2007, 8, 6 (in Russian).

261. Renyi A. On a new axiomatic theory of probability. ´ Acta Mathematica Hungaria, 1955, 6, P. 285–335.

262. Klimontovich Yu.L. Entropy and information of open systems. Progress of physical sciences, 1999, 169 (4), P. 443–452 (in Russian).

263. Dozhdikova O.L., Zarichnyak Yu.P., et al. Anomalies of concentration dependence of heat conductivity of the baked compositions with an ultradisperse component in the TiN–AlN system. Powder metallurgy, 1992, 5 (in Russian).

264. Dulnev G.N. Processes of transfer in non-uniform environments. ITMO University, Leningrad, 1985, 27 p. (in Russian).

265. Dulnev G.N., Zarichnyak Yu.P. Heat conductivity of mixes and composite materials. Reference book. Energy, Leningrad, 1974, 264 p. (in Russian).

266. Dykhne A.M., Snarskii A.A., Zhenirovskii M.I. Stability and chaos in randomly inhomogeneous two-dimensional media and LC circuits. Phys. Uspekhi, 2004, 47 (8), P. 821–828 (in Russian).

267. Galkin A.A., Lunin V.V. Water in sub- and supercritical states as a universal medium for chemical reactions. Russ. Chem. Rev., 2005, 74 (1), P. 21–35.

268. Valyashko V.M. Equilibria with the participation of supercritical fluids. Supercritical Fluids. Theory and practices, 2006, 1, P. 10–26.

269. Aymonier C., Loppinet-Serani A., et al. Review of supercritical fluids in inorganic materials science. Journal of Supercritical Fluids, 2006, 38, P. 242–251.

270. Aimable A., Muhr H., et al. Continuous hydrothermal synthesis ofinorganic nanopowders in supercritical water: Towards a better control of the process. Powder Technology, 2009, 190, P. 99–106.

271. Rekhviashvili S.Sh., Kishtikova E.V. On the size dependence of the surface tension. Technical Physics, 2011, 56 (1), P. 143–146.

272. Abraham F.F. Re-examination of homogeneous nucleation theory: statistical thermodynamics aspects. J. Chem. Phys., 1968, 48 (2), P. 732–740.

273. Lin J. Equilibrium distribution of droplets in the theory of nucleation. J. Chem. Phys., 1968, 48 (9), P. 4128–4130.

274. Stillinger F.H. Comment on the translation-rotation paradox in the theory of irreversible condensation. J. Chem. Phys., 1968, 48 (3), P. 1430–1431.

275. Kuni F.M., Rusanov A.I. The homogeneous nucleation theory and the fluctuation of the center of mass of a drop. Phys. Letters A, 1969, 29 (6), P. 337–338.

276. Reiss H. Treatment of drop like clusters by means of the classical phase integral in nucleation theory. J. Stat. Phys., 1970, 2 (1), P. 83–104.

277. Blander M., Katz J.L. The thermodynamics of cluster formation in nucleation theory. J. Stat. Phys., 1972, 4 (1), P. 55–59.

278. Girshick S.L. Comment on: Self-consistency correction to homogeneous nucleation theory. J. Chem. Phys., 1991, 94 (1), P. 826–828.

279. Katz J.L. Nucleation theory without Maxwell Demons. J. Coll. Interface Sci., 1977, 61 (2), P. 351–355.

280. Garnier J.P., Mirabel P., Rabeony H. Experimental results of homogeneous nucleation of super saturated vapors. J. Chem. Phys., 1983, 79 (4), P. 2097–2098.

281. Ruth V., Hirth J.P., Pound G.M. On the theory of homogeneous nucleation and spinodal decomposition in condensation from the vapor phase. J. Chem. Phys., 1988, 88 (11). P. 7079–7087.

282. Auer S., Frencel D. Numerical predication of absolute crystallization rates in hard-sphere colloids. J. Chem. Phys., 2004, 120 (6), P. 3015–3029.

283. Girshick S.L., Chiu C.P. Kinetic nucleation theory: A new expression for the rate of homogeneousnucleation from an ideal supersaturated vapor. J. Chem. Phys., 1990, 93 (2), P. 1273–1278.

284. Zeng X.C., Oxtoby D.W. Gas-liquid nucleation in Lennard-Jones fluids. J. Chem. Phys., 1991, 94 (6), P. 4472–4478.

285. Cahn J.W., Hilliard J.E. Free energy of a nonuniform system. III. Nucleation in a two–component incompressible fluid. J. Chem. Phys., 1959, 31 (3), P. 688–700.

286. Lothe J., Pound G.M. Reconsideration of nucleation theory. J. Chem. Phys., 1962, 36 (8), P. 2080–2085.

287. Lothe J. Concentration of clusters in nucleation and the classical phase integral. J. Chem. Phys., 1968, 48 (4), P. 1849–1852.

288. Frenkel J.A. General theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys., 1939, 7 (7), P. 538–546.

289. Volmer M. Kinetik der Phasenbildung. Angewandte Chemie, 1939, 30, P. 503–504.

290. Tribus M. Thermostatics and thermodynamics. Energia, Moscow, 1970, 504 p. (in Russian).


Review

For citations:


Kovalenko A.N., Tugova E.A. Thermodynamics and kinetics of non-autonomous phase formation in nanostructured materials with variable functional properties. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(5):641-662. https://doi.org/10.17586/2220-8054-2018-9-5-641-662

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)