Formation mechanism, thermal and magnetic properties of (Bi1−xSrx)m+1Fem−3Ti3O3(m+1)−δ (m = 4 – 7) ceramics
https://doi.org/10.17586/2220-8054-2018-9-5-676-687
Abstract
Specific features of the formation of Aurivillius phases (Bi1−xSrx)m+1Fem−3Ti3O3(m+1)−δ (m = 4−7; x = 0.0−0.7) with a perovskitelike block having a nanometric thickness (h) of 2 – 3 nm are described. It has been established that the degree of isomorphous substitution in the bismuth sublattice and thermal stability of phases tend to reduce with the increasing h. It has been demonstrated that the magnetic ions inside the perovskite-like block can have antiferromagnetic interaction exchange that influences magnetic properties of the Aurivillius phases.
Keywords
About the Authors
N. A. LomanovaRussian Federation
26 Polytekhnicheskaya Str., St. Petersburg 194021
M. V. Tomkovich
Russian Federation
26 Polytekhnicheskaya Str., St. Petersburg 194021
V. L. Ugolkov
Russian Federation
Adm. Makarova emb. 2, St. Petersburg, 199034
M. P. Volkov
Russian Federation
26 Polytekhnicheskaya Str., St. Petersburg 194021
I. V. Pleshakov
Russian Federation
26 Polytekhnicheskaya Str., St. Petersburg 194021
V. V. Panchuk
Russian Federation
7-9 Universitetskaya Emb., St. Petersburg, 199034; St. Petersburg, ul. Ivana Chernykh, 31-33, lit. A., 198095
V. G. Semenov
Russian Federation
7-9 Universitetskaya Emb., St. Petersburg, 199034; St. Petersburg, ul. Ivana Chernykh, 31-33, lit. A., 198095
References
1. Keeney L., Downing C., Schmidt M., Pemble M.E., Nicolosi V., Whatmore R.W. Direct atomic scale determination of magnetic ion partition in a room temperature multiferroic material. Sci. Rep., 2017, 7(1), P. 1737–1748.
2. Faraz A., Maity T., Schmidt M., Deepak N., Roy S., Pemble M.E., Whatmore R.W., Keeney L. Direct visualization of magnetic-fieldinduced magnetoelectric switching in multiferroic Aurivillius phase thin films. J. Am. Cer. Soc., 2017, 100(3), P. 975–987.
3. Keeney L., Maity T., Schmidt M., Amann A., Deepak N., Petkov N., Roy S., Pemble M. E., Whatmore R. W. Magnetic field-Induced ferroelectric switching in multiferroic Aurivillius phase thin films at room temperature. J. Am. Ceram. Soc., 2013, 96(8), P. 2339–2357.
4. Varentsova A.S., Potkina M.N., von Malottki S., Heinze S., Bessarab P.F. Interplay between size and stability of magnetic skyrmions. Nanosystems: Phys. Chem. Math., 2018, 9(3), P. 356–363.
5. Lomanova N.A., Gusarov V.V. On the limiting thickness of the perovskite-like block in the Aurivillius phases in the Bi2O3-TiO2-Fe2O3 system. Nanosystems: Phys. Chem. Math., 2011, 2(3), P. 93–101.
6. Lomanova N.A., Semenov V.G., Panchuk V.V., Gusarov V.V. Structural changes in the homologous series of the Aurivillius phases Bin+1Fen−3Ti3O3n+3. J. Alloys Comp., 2012, 528, P. 103–108.
7. Aurrivillius B. Mixed bismuth oxides with layer lattices. I. Ark. Kemi., 1949, 1(1), P. 463–471.
8. Sosnowska I., Peterlin-Neumaier T., Steichele E.J. Spiral magnetic ordering in bismuth ferrite. Phys. C: Solid State Phys., 1982, 15, P. 4835–4846.
9. Lomanova N.A., Semenov V.G., Panchuk V.V., Gusarov V.V. Structural features and stability of the Aurivillius phases Bin+1Fen−3Ti3O3n+3. Dokl. Chem., 2012, 447(2), P. 293–295.
10. Lomanova N.A., Morozov M.I., Ugolkov V.L., Gusarov V.V. Properties of Aurivillius phases in the Bi4Ti3O12-BiFeO3 system. Inorganic Materials, 2006, 42(2), P. 189–195.
11. Jartych E., Gaska K., Przewoznik J., Kapusta C., Lisinska-Czekaj A., Czekaj D., Surowiec Z. Hyperfine interactions and irreversible magnetic behavior in multiferroic Aurivillius compounds. Nukleonika, 2013, 58, P. 47–51.
12. Birenbaum A.Y., Ederer C. Potentially multiferroic Aurivillius phase Bi5FeTi3O15: cation site preference, electric polarization, and magnetic coupling from first principles. Phys. Rev. B, 2014, 90, P. 214109–214121.
13. Lomanova N.A., Gusarov V.V. Impedance spectroscopy of polycrystalline materials based on the Aurivillius phase system Bi4Ti3O12- BiFeO3. Nanosystems: Phys. Chem. Math., 2012, 3(6), P. 112–122.
14. Lomanova N.A., Pleshakov I.V., Volkov M.P., Gusarov V.V. Magnetic properties of Aurivillius phases Bim+1Fem−3Ti3O3m+3 with m=5.5, 7, 8. Mat. Sci. Eng. B, 2016, 214, P. 51–56.
15. Huang Y., Wang G., Sun Sh., Wang J., Peng R., Lin Y., Zhai X., Fu Zh., Lu Y.. Observation of exchange anisotropy in single-phase layer structured oxides with long periods. Sci. Rep., 2015, 5, P. 15261–15266.
16. Pikula T., Dzik J., Guzdek P., Mitsiuk V.I., Surowiec Z., Panek R., Jartych E. Magnetic properties and magnetoelectric coupling enhancement in Bi5Ti3FeO15 ceramics. Ceram. Int., 2017, 43(14), P. 11442–11449.
17. Lomanova N.A., Pleshakov I.V., Volkov M.P., Gusarov V.V. The thermal behavior of mixed-layer Aurivillius phase Bi13Fe5Ti6O39. J. Therm. Anal. Calorim., 2018, 131, P. 473–478.
18. Lomanova N.A., Tomkovich M.V., Ugolkov V.L., Gusarov V.V. Formation and thermal properties of nanocrystalline Bi4Ti3O12. Russ. J. Appl. Chem., 2017, 90(6), P. 831–837.
19. Lomanova N.A., Ugolkov V.L., Panchuk V.V., Semenov V.G. Formation and thermal behaviors of the Aurivillius phases Am−1Bi2Fem−3Ti3O3m+3−δ (A-Bi, Sr). Russ. J. Gen. Chem., 2017, 87(3), P. 365–372.
20. Lomanova N.A., Gusarov V.V. Phase states in the Bi4Ti3O12-BiFeO3 section in the Bi2O3-TiO2-Fe2O3 system. Russ. J. Inorg. Chem., 2011, 56(4), P. 616–620.
21. Lomanova N.A., Ugolkov V.L., Gusarov V.V. Thermal behavior of layered perovskite-like compounds in the Bi4Ti3O12-BiFeO3system. Glass Physics and Chemistry, 2007, 33(6), P. 608–612.
22. Isupov V.A. Curie Temperatures of Am−1Bi2MmO3m+3 layered ferroelectrics. Inorganic Materials, 1997, 33(9), P. 1106–1110.
23. Snedden A., Hervoches Ch. H., Lightfoot Ph. Ferroelectric phase transition in SrBi2Nb2O9 and Bi5Ti3FeO15: a powder neutron diffraction study. Phys. Rev., 2003, 67, P. 092102–092105.
24. Krzhizhanovskaya M., Filatov S., Gusarov V., Paufler P., Bubnova R., Morozov M., Meyer D.C. Aurivillius phases in the Bi4Ti3O12- BiFeO3 system: thermal behaviour and crystal structure. Z. Anorg. Allg. Chem., 2005, 631, P. 1603–1608.
25. Yang J., Tong W., Liu Z., Zhu X.B., Dai J.M., Song W.H., Yang Z. R., Sun Y.P. Structural, magnetic, and EPR studies of the Aurivillius phase Bi6Fe2Ti3O18 and Bi6FeCrTi3O18. Phys. Rev. B, 2012, 86, P. 104410–104417.
26. Dong X.W., Wang K.F., Wan J.G., Zhu J.S., Liu J.-M. Magnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol-gel method. J. Appl. Phys., 2008, 103, P. 0941010–0941014.
27. Morozov M.I., Mezentseva L.P., Gusarov V.V. Mechanism of formation of Bi4Ti3O12. Russ. J. Gen. Chem., 2002, 72(7), P. 1038–1040.
28. Morozov M.I., Gusarov V.V. Synthesis of Am−1Bi2MmO3m+3compounds in the Bi4Ti3O12-BiFeO3system. Inorganic Matials, 2002, 38(7), P. 723–729.
29. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special features of formation of nanocrystalline BiFeO3 via the glycinenitrate combustion method. Russ. J. Gen. Chem., 2016, 86(10), P. 2256–2262.
30. Proskurina O.V., Tomkovich M.V., Bachina A.K., Sokolov V.V., Danilovich D.P., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of nanocrystalline BiFeO3 under hydrothermal conditions. Russ. J. Gen. Chem., 2017, 87(11), P. 2507–2515.
31. Dubey S., Subohi O., Kurchania R. Optimization of calcination and sintering temperature of sol-gel synthesised Ba2Bi4Ti5O18, Pb2Bi4Ti5O18 and Sr2Bi4Ti5O18 ceramics. Ceram. Int., 2017, 43(15), P. 12755–12763.
32. Lomanova N.A., Gusarov V.V. Effect of the phase composition of the starting mixture on the formation of the layered perovskite-like compound Bi7Fe3Ti3O21. Russ. J. Inorg. Chem., 2010, 55(10), P. 1541–1545.
33. Lomanova N.A., Gusarov V.V. Effect of surface melting on the formation and growth of nanocrystals in the Bi2O3–Fe2O3 system. Russ. J. Gen. Chem., 2013, 83, P. 2251–2253.
34. Tugova E.A., Travitskov A.V., Tomkovich M.V., Sokolov V.V., Nenasheva E.A. Solid -phase synthesis and dielectric properties of materials based on LaAlO3–CaTiO3 system. Russ. J. Appl. Chem., 2017, 90(11), P. 1738–1745.
35. Tugova E.A. New DySrAlO4 compound synthesis and formation process correlations for LnSrAlO4 (Ln - Nd, Gd, Dy) series. Acta Metallurgica Sinica (English Letters), 2016, 29(5), P. 450–456.
36. Popkov V.I., Tugova E.A., Bachina A.K., Almyasheva O.V. The formation of nanocrystall ine orthoferrites of rare-earth elements XFeO3 (X -Y, La, Gd) via heat treatment of coprecipitated hydroxides. Russ. J. Gen. Chem., 2017, 87(11), P. 2516–2524.
37. Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organic-inorganic. Nanosystems: Phys. Chem. Math., 2017, 8(4), P. 476–502.
38. Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO3 nanocrystals under glycine-nitrate combustion formation. J. Cryst. Grow., 2017, 467, P. 88–92.
39. Morozov M.I., Lomanova N.A., Gusarov V.V. Specific Features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides. Russ. J. Gen. Chem., 2003, 73, P. 1772–1776.
40. Bespalova Zh.I., Khramenkova A.V. The use of transient electrolysis in the technology of oxide composite nanostructured materials: review. Nanosystems: Phys. Chem. Math., 2016, 7(3), P. 433–450.
41. Gusarov V.V., Suvorov S.A. Melting-point of locally equilibrium surface phases in polycrystalline systems based on a single volume phase. Russ. J. Appl. Chem., 1990, 63(8), P. 1479–1484.
42. Gusarov V.V. The thermal effect of melting in polycrystalline systems. Thermochimica Acta, 1995, 256(2), P. 467–472.
43. Gusarov V.V. Fast Solid-Phase Chemical Reactions. Russ. J. Gen. Chem., 1997, 67(12), P. 1846.
44. Shannon R.D., Prewitt C.T. Effective ionic radii in oxides and fluorides. Acta Cristallogr. B., 1969, 25(6), P. 928–929.
Review
For citations:
Lomanova N.A., Tomkovich M.V., Ugolkov V.L., Volkov M.P., Pleshakov I.V., Panchuk V.V., Semenov V.G. Formation mechanism, thermal and magnetic properties of (Bi1−xSrx)m+1Fem−3Ti3O3(m+1)−δ (m = 4 – 7) ceramics. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(5):676-687. https://doi.org/10.17586/2220-8054-2018-9-5-676-687