Effect of Ce cations on the crystallite size and pore structure genesis in nanostructured rutile after calcination
https://doi.org/10.17586/2220-8054-2018-9-5-688-695
Abstract
A method for the low-temperature synthesis of titania with the 3D rutile nanostructure was developed, and the effect of introduced cerium ions on the thermal stability of the material was studied. According to XRD, TEM, Raman spectroscopy and BET data, the introduction of 3 – 10 wt.% Ce into the rutile matrix decreases the growth of nanorutile crystallites under the action of high temperatures ranging from 300 – 1000 ◦C and provides the formation of a more porous structure in comparison with unmodified samples. Cerium cations are stabilized in the region of interblock boundaries or in the structural defects of rutile TiO2 and are released as the bulk CeO2 phase only at 1000 ◦C, which does not exert a stabilizing effect at this temperature.
Keywords
About the Authors
N. V. ShikinaRussian Federation
5 Lavrentiev Ave., 630090, Novosibirsk
E. V. Bessudnova
Russian Federation
5 Lavrentiev Ave., 630090, Novosibirsk
V. A. Ushakov
Russian Federation
5 Lavrentiev Ave., 630090, Novosibirsk
A. P. Nikitin
Russian Federation
18 Sovetskiy pr., 650000, Kemerovo
M. S. Mel’gunov
Russian Federation
5 Lavrentiev Ave., 630090, Novosibirsk
A. V. Ishchenko
Russian Federation
5 Lavrentiev Ave., 630090, Novosibirsk
Z. R. Ismagilov
Russian Federation
5 Lavrentiev Ave., 630090, Novosibirsk; 18 Sovetskiy pr., 650000, Kemerovo
References
1. Wu Z., Wu Q., et al. Progress in the synthesis and applications of hierarchical flower-like TiO2 nanostructures. Particuology, 2014, 15, P. 61–70.
2. Liu W., Wang A., et al. Preparation and photocatalytic activity of hierarchically 3D ordered macro/mesoporous titania inverse opal films. Microporous and Mesoporous Materials, 2015, 204, P. 143–148.
3. Chen P.C., Tsai M.C., et al. The “cascade effect” of nano/micro hierarchical structure: A new concept for designing the high photoactivity materials – An example for TiO2. Applied Catalysis B: Environmental. 2013, 142–143, P. 752–760.
4. Yan T., Yuan R., Li W., You J. Origin of superior photocatalytic activity in rutile TiO2 hierarchical microspheres: The dominate role of “microcavity” structure. Applied Catalysis A: General, 2014, 478, P. 204–210.
5. Noh J., Yi M., et al. A facile synthesis of rutile-rich titanium oxide nanoparticles using reverse micelle method and their photocatalytic applications. Journal of Industrial Engineering Chemistry, 2016, 33, P. 369–373.
6. Zhang J., Liu P., et al. One-step synthesis of rutile nano-TiO2 with exposed {1 1 1} facets for high photocatalytic activity. Journal of Alloys and Compounds, 2015, 632, P. 133–139.
7. Li Y., Liu J., Jia Z. Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process. Materials Letters, 2006, 60, P. 1753–1757.
8. Pffaf G., Reynders P. Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments. Chemical Reviews, 1999, 99, P. 1963–1981.
9. Gribb A.A., Banfield J.F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist, 1997, 82, P. 717–728.
10. Fattakhova-Rohlfing D., Zaleska A., Bein T. Three-Dimensional Titanium Dioxide Nanomaterials. Chemical Reviews, 2014, 114, P. 9487– 9558.
11. Ismagilov Z.R., Shikina N.V., Bessudnova E.V., Ushakov V.A. Effect of synthesis temperature on properties of nanoscale rutile with high surface area. Nanotechnologies in Russia, 2014, 9 (1–2), P. 21–25.
12. Bessudnova E.V., Shikina N.V., Ismagilov Z.R. Nanoscale titanium dioxide synthesized by sol-gel method. International Scientific Journal for Alternative Energy and Ecology, 2014 , 7 (147), P. 39–47.
13. Bessudnova E.V., Shikina N.V., Ismagilov Z.R. Synthesis and characterization of 3D hierarchical rutile nanostructures: Effects of synthesis temperature and reagent concentrations on the texture and morphology. Nanotechnologies in Russia, 2017, 12 (3–4), P. 156–164.
14. Shikina N.V., Bessudnova E.V., et al. Study of nanostructured TiO2 rutile with hierarchical 3-D architecture. Effect of the synthesis and calcinations temperature. Journal of Nanoscience and Nanotechnology, sent to the press.
15. Zenkovets G.A., Shutilov A.A., et al. Formation of the structure of cerium oxide-modified titanium dioxide. Kinetics and Catalysis, 2007, 48 (5), P. 742–748.
16. Zenkovets G.A., Gavrilov V.Yu., Shutilov A.A., Tsybulya S.V. Effect of silicon dioxide on the formation of the phase composition and pore structure of titanium dioxide with the anatase structure. Kinetics and Catalysis, 2009, 50 (5), P. 760–767.
17. Shutilov A.A., Zenkovets G.A., Gavrilov V.Yu., Tsybulya S.V. Effect of yttrium oxide on the formation of the phase composition and porous structure of titanium dioxide. Kinetics and Catalysis, 2011, 52 (1), P. 111–118.
18. Koryabkina N.A., Shkrabina R.A., et al. Study of the Catalysts of Fuel Combustion. XVII. Effect of Lanthanum and Cerium on Structural and Mechanical Properties of Alumina. Kinetics and Catalysis, 1997, 38 (1), P. 112–116.
19. Koryabkina N.A., Shkrabina R.A., Ushakov V.A., Ismagilov Z.R. Synthesis of a mechanically strong and thermally stable alumina support for catalyst used in combustion processes. Catalysis Today, 1996, 29 (1–4), P. 427–431.
20. Penn R.L., Banfield J.F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281, P. 969–971.
21. Handbook of Minerals Raman Spectra (ENS-Lyon). Free database 2000–2018. URL: www.ens-lyon.fr/LST/Raman/ spectrum.php?nom=rutile.
22. Cui J., Hope G.A. Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7. Journal of Spectroscopy, 2015, 2015, 940172.
Review
For citations:
Shikina N.V., Bessudnova E.V., Ushakov V.A., Nikitin A.P., Mel’gunov M.S., Ishchenko A.V., Ismagilov Z.R. Effect of Ce cations on the crystallite size and pore structure genesis in nanostructured rutile after calcination. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(5):688-695. https://doi.org/10.17586/2220-8054-2018-9-5-688-695