Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Biocompatible water-soluble endometallofullerenes: peculiarities of self-assembly in aqueous solutions and ordering under an applied magnetic field

https://doi.org/10.17586/2220-8054-2016-7-1-22-29

Abstract

The self-organization of water-soluble endometallofullerenes (fullerenols) in solutions has been studied by neutron scattering in connection with their applications (Magneto-Resonance Imaging, X-Ray Tomography). Their functional characteristics depend strongly on molecular self-assembly which may be altered by chemical additives, concentration increase or the magnetic field applied. Polarized neutrons have been used to search paramagnetic fullerenols’ organization into supramolecular structures influenced by the fullerenol concentration and their intensified interactions in a magnetic field.

About the Authors

V. T. Lebedev
Petersburg Nuclear Physics Institute, NRC Kurchatov Institute
Russian Federation

188300 Gatchina, Leningrad distr.



Yu. V. Kulvelis
Petersburg Nuclear Physics Institute, NRC Kurchatov Institute
Russian Federation

188300 Gatchina, Leningrad distr.



V. V. Runov
Petersburg Nuclear Physics Institute, NRC Kurchatov Institute
Russian Federation

188300 Gatchina, Leningrad distr.



A. A. Szhogina
Petersburg Nuclear Physics Institute, NRC Kurchatov Institute
Russian Federation

188300 Gatchina, Leningrad distr.



M. V. Suyasova
Petersburg Nuclear Physics Institute, NRC Kurchatov Institute
Russian Federation

188300 Gatchina, Leningrad distr.



References

1. Heath J.R., O’Brien S.C., et al. Lanthanum complexes of spheriodal carbon shells. J. Am. Chem. Soc., 1985, 107, P. 7779–7780.

2. Piotrovsky L., Eropkin M., et al. Biological Effects in Cell Cultures of Fullerene C60: Dependence on Aggregation State. In: Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Eds. F. Cataldo, T. Da Ros. Germany: Springer, 2008, P. 139–155.

3. Kato H., Kanazawa Y., et al. Lanthanoid endohe-dral metallofullerenols for MRI contrast agents. J. Am. Chem. Soc., 2003, 125, P. 4391–4397.

4. Yin J.J., Lao F., et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30 (4), P. 611–621.

5. Grushko Yu.S., Kozlov V.S., et al. MRI-contrasting system based on water-soluble fullerene / Gd-metallofullerene mixture. Fuller., Nanotub. Carbon Nanostr., 2010, 18 (4), P. 417–421.

6. Grushko Yu.S., Sedov V.P., Kozlov V.S., Tsirlina E.V. Method of preparation of MRI-contrasting agent. Patent RU 2396207 C2 from 10.08.2010, Bull. No. 22, 2010.

7. Toth E., Bolskar R.D., et al. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc., 2005, 127 (2), P. 799–805.

8. Runov V.V., Il’in D.S., Runova M.K., Radzhabov A.K. Study of ferromagnetic correlations caused by the impurities in non magnetic materials by the method of small-angle scattering of polarized neutrons. JETP Lett., 2012, 95 (9), P. 467–470.

9. Lindner P. Water standard calibration at D11 verified with polymer samples. J. Appl. Crystallography, 2000, 33, P. 807–811.

10. Kitazawa H., Hashi K., et al. Molecular dynamics and structural phase transition in C60 nanowhiskers. J. Phys.: Conf. Series, 2009, 159, 012022 (1).


Review

For citations:


Lebedev V.T., Kulvelis Yu.V., Runov V.V., Szhogina A.A., Suyasova M.V. Biocompatible water-soluble endometallofullerenes: peculiarities of self-assembly in aqueous solutions and ordering under an applied magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):22-29. https://doi.org/10.17586/2220-8054-2016-7-1-22-29

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)