Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Electrical properties of carbon nanotubes / WS2 nanotubes (nanoparticles) hybrid films

https://doi.org/10.17586/2220-8054-2016-7-1-37-43

Abstract

DC and AC electrical properties of hybrid films, consisting of carbon nanotubes and tungsten disulfide nanotubes (and fullerene like nanoparticles) were studied within the 2 – 300 K temperature range and over the 20 Hz – 1 MHz frequency range. The temperature dependences of the resistance R(T) exhibit behavior typical for the fluctuation-induced tunneling model in the intermediate temperature range. Analysis of the dependences of real and imaginary components of the impedance on the frequency (Z’(f) and Z”(f)) demonstrates the rising role of the contact barriers between carbon nanotubes inside hybrid films, consisting of the carbon nanotubes and inorganic tungsten disulfide nanotubes as the temperature was decreased. The active component of the impedance was found to prevail in the AC electrical properties of the hybrid films, consisting of multi-wall carbon nanotubes and WS2 nanoparticles over the entire available temperature range.

About the Authors

V. K. Ksenevich
Department of Physics, Belarusian State University
Belarus

Minsk



N. I. Gorbachuk
Department of Physics, Belarusian State University
Belarus

Minsk



Ho Viet
Department of Physics, Belarusian State University
Belarus

Minsk



M. V. Shuba
Research Institute for Nuclear Problems, Belarusian State University
Belarus

Minsk



P. P. Kuzhir
Research Institute for Nuclear Problems, Belarusian State University
Belarus

Minsk



S. A. Maksimenko
Research Institute for Nuclear Problems, Belarusian State University
Belarus

Minsk



A. G. Paddubskaya
Center for Physical Sciences and Technology
Lithuania

Vilnius



G. Valusis
Center for Physical Sciences and Technology
Lithuania

Vilnius



A. D. Wieck
Department of Physics and Astronomy, Bochum Ruhr-University
Germany

Bochum



A. Zak
Department of Sciences, Holon Institute of Technology
Israel

Holon



R. Tenne
Department of Materials and Interfaces, Weizmann Institute of Science
Israel

Rehovot



References

1. Slepyan G.Ya., Maksimenko S.A., et al. Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys. Rev. B, 1999, 60 (24), P. 17136–17149.

2. Rybczynski J., Kempa K., et al. Subwavelength waveguide for visible light. Appl. Phys. Lett., 2007, 90, 021104 (1–3).

3. Hanson G.W. Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag., 2005, 53 (11), P. 3426–3435.

4. Slepyan G.Ya., Shuba M.V., Maksimenko S.A., Lakhtakia A. Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas. Phys. Rev. B, 2006, 73 (19), 195416 (1–11).

5. Seifert G., Terrones H., et al. On the electronic structure of WS2 nanotubes. Solid State Commun., 2000, 114 (5), P. 245–248.

6. Levi R., Bitton O., et al. Field-Effect Transistors Based on WS2 Nanotubes with High Current-Carrying Capacity. Nano Lett., 2013, 13 (8), P. 3736–3741.

7. Naffakh M., Diez-Pascual A.M., Gomez-Fatou M.A. New hybrid nanocomposites containing carbon nanotubes, inorganic fullerene-like WS2 nanoparticles and poly(ether ether ketone) (PEEK). J. Mater. Chem., 2011, 21 (20), P. 7425–7433.

8. Eder D. Carbon Nanotube – Inorganic Hybrids. Chem. Rev., 2010, 110 (3), P. 1348–1385.

9. Zak A., Sallacan-Ecker L., et al. Insight into the Growth Mechanism of WS2 Nanotubes in the Scaled-Up Fluidized-Bed Reactor. NANO, 2009, 04 (02), P. 91–98.

10. Sheng P. Fluctuation-Induced Tunneling Conduction in Disordered Materials. Phys. Rev. B, 1980, 21 (6), P. 2180–2195.

11. Ksenevich V.K., Dauzhenka T.A., et al. Electrical transport in carbon nanotube coatings of silica fibers. Phys. Status Solidi C, 2009, 6 (12), P. 2798–2800.

12. Kuzhir P., Ksenevich V.K., et al. CNT based epoxy resin composites for conductive applications. Nanosci. Nanotechnol. Lett., 2011, 3 (6), P. 889–894.

13. Gershenson M.E. Low-Temperature Dephasing in Disordered Conductors: Experimental Aspects. Annalen der Physik (Leipzig), 1999, 8 (7–9), P. 559–568.

14. Barsoukov E., Macdonald J.R. (Eds.) Impedance Spectroscopy. Theory, Experiment, and Applications. Wiley, Hoboken, 2005, 616 p.

15. Sluyters-Rehbach M. Impedances of electrochemical systems: Terminology, nomenclature and representation – Part I: Cells with metal electrodes and liquid solutions. Pure and Appl. Chem., 1994, 66 (9), P. 1831–1891.

16. Burke P.J. An RF Circuit Model for Carbon Nanotubes. IEEE Trans. Nanotechnol., 2003, 2 (1), P. 55–58.


Review

For citations:


Ksenevich V.K., Gorbachuk N.I., Viet H., Shuba M.V., Kuzhir P.P., Maksimenko S.A., Paddubskaya A.G., Valusis G., Wieck A.D., Zak A., Tenne R. Electrical properties of carbon nanotubes / WS2 nanotubes (nanoparticles) hybrid films. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):37-43. https://doi.org/10.17586/2220-8054-2016-7-1-37-43

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)