Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Metric graph version of the FitzHugh–Nagumo model

https://doi.org/10.17586/2220-8054-2019-10-6-623-626

Abstract

The FitzHugh–Nagumo model on a metric graph is studied. System of delayed differential equations is used to model a pair of FitzHughNagumo excitable systems with time-delayed fast threshold modulation coupling. The model can be used for description of signal transmission in different nanostructures, microsystems or neural networks. The effect of time delay on the impulse transmission is studied.

About the Authors

E. G. Fedorov
ITMO University
Russian Federation

Kronverkskii, 49, St. Petersburg, 197101



A. I. Popov
ITMO University
Russian Federation

Kronverkskii, 49, St. Petersburg, 197101



I. Y. Popov
ITMO University
Russian Federation

Kronverkskii, 49, St. Petersburg, 197101



References

1. Rosenblum M.G., Pikovsky A.S. Controlling synchronization in an ensemble of globally coupled oscillators. Physical Review Letters, 2004, 92, P. 114102.

2. Gassel M., Glatt E., Kaiser F. Delay-sustained pattern formation in subexcitable media. Physical Review E, 2008, 77, P. 066220.

3. Rankovic D. Bifurcations of FitzHugh–Nagumo excitable systems with chemical delayed coupling. Matematicki Vesnik, 2011, 63, P. 103114.

4. Buric N., Todorovic D. Bifurcations due to small time-lag in coupled excitable systems. International Journal of Bifurcation and Chaos, 2005, 15, P. 1775-1785.

5. Domogo A.A., Collera J. Symmetric solutions to a system of mutually delay-coupled oscillators with conjugate coupling. Journal of Physics: Conference Series, 2018, 1123(1), P. 012028.

6. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 1952, 117(4), P. 500–544.

7. Izhikevich E.M. Dynamical systems in neuroscience, MIT Press, Cambridge, MA, 2007.

8. Murray J.D., Mathematical Biology. Biomathematics Vol. 19, Springer-Verlag, Berlin, 1989.

9. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal, 1961, 1(6), P. 445–466.

10. Nagumo J., Arimoto S. and Yoshizawa S. An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 1962, 50(10), P. 2061–2070.

11. B. Van der Pol. On relaxation-oscillations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1926, 1(11), P. 978–992.

12. Postnikov E.B., Titkova O.V. A Correspondence between the Models of Hodgkin-Huxley and FitzHugh–Nagumo Revised. Eur. Phys. J. Plus, 2016, 131(11), P. 411.

13. Saha A. and Feudel U. Extreme Events in FitzHugh–Nagumo Oscillators Coupled with Two Time Delays. Phys. Rev. E, 2017, 95(6), P. 062219.

14. Kudryashov N.A. Asymptotic and Exact Solutions of the FitzHughNagumo Model. Regul. Chaotic Dyn., 2018, 23(2), P. 152-160.

15. D.-P. Li. Phase transition of oscillators and travelling waves in a class of relaxation systems. Discrete and Continuous Dynamical Systems B, 2016, 21(8), P. 2601–2614.

16. Gu A., Wang B. Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise. Discrete and Continuous Dynamical Systems B, 2018, 23(4), P. 1689–1720.

17. Bur N., Grozdanov I., and Vasov N. Type I vs. type II excitable systems with delayed coupling. Chaos, Solitons and Fractals, 2005, 23(4), P. 1221–1233.

18. Campbell S.A. Time delays in neural systems in Handbook of brain connectivity, Springer, Berlin, Heidelberg, 2007, P. 65–90.

19. Rinzel J. Models in neurobiology in Nonlinear phenomena in physics and biology, Springer, Boston, MA, 1981, P. 345–367.

20. Bur N. and Todorov D. Dynamics of FitzHugh–Nagumo excitable systems with delayed coupling. Physical Review E, 2003, 67(6), P. 066222.

21. Berkolaiko G., Kuchment P. Introduction to Quantum Graphs. AMS, Providence, 2012.

22. Eremin D.A., Grishanov E.N., Nikiforov D.S., Popov I.Y. Wave dynamics on time-depending graph with Aharonov-Bohm ring. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9, P. 457–463.


Review

For citations:


Fedorov E.G., Popov A.I., Popov I.Y. Metric graph version of the FitzHugh–Nagumo model. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(6):623-626. https://doi.org/10.17586/2220-8054-2019-10-6-623-626

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)