Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Is graphane the most stable carbon monohydride?

https://doi.org/10.17586/2220-8054-2016-7-1-44-50

Abstract

We discuss a number of hydrocarbon structures whose cohesive energy is not worse than that of benzene and graphanes. These structures can be regarded as sublattices of known carbon structures so the strain exerted on the crystal lattice is minimal and caused mostly by the steric interactions of hydrogen atoms. Possible synthetic routes are proposed. Due to their exceptional mechanical, structural and electrical properties, these crystal structures may have utility as mechanical, optoelectronic or biological materials.

About the Authors

M. V. Kondrin
Institute for High Pressure Physics RAS
Russian Federation

142190 Troitsk, Moscow



V. V. Brazhkin
Institute for High Pressure Physics RAS
Russian Federation

142190 Troitsk, Moscow



References

1. Sluiter M. H. F., Kawazoe Y. Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene. Phys. Rev. B, 2003, 68 (8), P. 085410.

2. Sofo J., Chaudhari A., Barber G. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B, 2007, 75 (15), P. 153401.

3. Elias D. C., Nair R. R., Mohiuddin T. M. G., Morozov S. V., Blake P., Halsall M. P., Ferrari A. C., Boukhvalov D. W., Katsnelson M. I., Geim A. K., Novoselov K. S. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 2009, 323 (5914), P. 610–613.

4. Savini G., Ferrari A. C., Giustino F. First-Principles Prediction of Doped Graphane as a High-Temperature Electron-Phonon Superconductor. Phys. Rev. Lett., 2010, 105 (3), P. 037002.

5. Loktev V., Turkowski V. Possible High-Temperature Superconductivity in Multilayer Graphane: Can the Cuprates be Beaten? Journal of Low Temperature Physics, 2011, 164 (5-6), P. 264–271.

6. Peng Q., Dearden A. K., Crean J., Han L., Liu S., Wen X., De S. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnology, Science and Applications, 2104, 7, P. 1–29.

7. Zhou C., Chen S., Lou J., Wang J., Yang Q., Liu C., Huang D., Zhu T. Graphene’s cousin: the present and future of graphane. Nanoscale Research Letters, 2014, 9 (1), P. 26.

8. Ciabini L., Gorelli F. A., Santoro M., Bini R., Schettino V., Mezouar M. High-pressure and high-temperature equation of state and phase diagram of solid benzene. Phys. Rev. B, 2005, 72 (9), P. 094108.

9. Eaton P. E., Cole T. W. Cubane. Journal of the American Chemical Society, 1964, 86 (15), P. 3157–3158.

10. Fleischer E. B. X-Ray Structure Determination of Cubane. Journal of the American Chemical Society, 1964, 86 (18), P. 3889–3890.

11. Yildirim T., Gehring P., Neumann D., Eaton P., Emrick T. Unusual structure, phase transition, and dynamics of solid cubane. Phys. Rev. Lett., 1997, 78 (26), P. 4938–4941.

12. Criegee R., Askani R. Octamethylsemibullvalene. Angewandte Chemie International Edition in English, 1968, 7 (7), P. 537–537.

13. Wen X.-D., Hoffmann R., Ashcroft N. W. Benzene under High Pressure: a Story of Molecular Crystals Transforming to Saturated Networks, with a Possible Intermediate Metallic Phase. Journal of the American Chemical Society, 2011, 133 (23), P. 9023–9035.

14. Fitzgibbons T. C., Guthrie M., shi Xu E., Crespi V. H., Davidowski S. K., Cody G. D., Alem N., Badding J. V. Benzene-derived carbon nanothreads. Nature Materials, 2015, 14, P. 43–47.

15. Lian C.-S., Wang X.-Q., Wang J.-T. Hydrogenated K4 carbon: A new stable cubic gauche structure of carbon hydride. The Journal of Chemical Physics, 2013, 138 (2), P. 024702.

16. He C., Sun L. Z., Zhang C. X., Zhong J. Low energy three-dimensional hydrocarbon crystal from cold compression of benzene. Journal of Physics: Condensed Matter, 2013, 25 (20), P. 205403.

17. Lian C.-S., Li H.-D., Wang J.-T. Crystalline structures of polymeric hydrocarbon with 3,4-fold helical chains. Sci. Rep., 2015, 5, P. 07723.

18. Eremets M. I., Gavriliuk A. G., Trojan I. A., Dzivenko D. A., Boehler R. Single-bonded cubic form of nitrogen. Nat Mater, 2004, 3 (8), P. 558–563.

19. Wen X.-D., Hand L., Labet V., Yang T., Hoffmann R., Ashcroft N. W., Oganov A. R., Lyakhov A. O. Graphane sheets and crystals under pressure. Proceedings of the National Academy of Sciences, 2011, 108 (17), P. 6833– 6837.

20. Kondrin M. V., Brazhkin V. V. Diamond monohydride: the most stable three-dimensional hydrocarbon. Phys. Chem. Chem. Phys., 2015, 17 (27), P. 17739–17744.

21. Blatov V. A., Proserpio D. M. Periodic-graph approaches in crystal structure prediction. In Modern Methods of Crystal Structure Prediction (Oganov A. R., editor), chapter 1, pp. 1–28. Wiley-VCH Verlag GmbH & Co. KGaA, 2010.

22. Delgado-Friedrichs O., Foster M. D., O’Keeffe M., Proserpio D. M., Treacy M. M. J., Yaghi O. M. What do we know about three-periodic nets? Journal of Solid State Chemistry, 2005, 178 (8), P. 2533 – 2554.

23. Németh P., Garvie L. A. J., Aoki T., Dubrovinskaia N., Dubrovinsky L., Buseck P. R. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat Commun, 2014, 5.

24. Tolèdano P., Dmitriev V. Reconstructive phase transitions in crystals and quasicrystals. World Scientific, Singapore, 1996.

25. Aroyo M. I., Perez-Mato J. M., Capillas C., Kroumova E., Ivantchev S., Madariaga G., Kirov A., Wondratschek H. Bilbao Crystallographic Server: I. Databases and crystallographic computing programs. Zeitschrift fu¨r Kristallographie, 2006, 221 (1), P. 15–27.

26. Capillas C., Kroumova E., Aroyo M. I., Perez-Mato J. M., Stokes H. T., Hatch D. M. SYMMODES: a software package for group-theoretical analysis of structural phase transitions. Journal of Applied Crystallography, 2003, 36 (3 Part 2), P. 953–954.

27. Kroumova E., Perez-Mato J. M., Aroyo M. I. WYCKSPLIT: a computer program for determination of the relations of Wyckoff positions for a group-subgroup pair. J. Appl. Cryst., 1998, 31, P. 646.

28. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

29. Artyukhov V. I., Chernozatonskii L. A. Structure and Layer Interaction in Carbon Monofluoride and Graphane: A Comparative Computational Study. The Journal of Physical Chemistry A, 2010, 114 (16), P. 5389–5396.

30. Giannozzi P., Baroni S., et al . QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 2009, 21 (39), P. 395502.

31. Balaban A. T., Klein D. J., Seitz W. A. Holes in diamond or carbon nitride lattices. International Journal of Quantum Chemistry, 1996, 60 (5), P. 1065–1068.

32. Clay W. A., Dahl J. E. P., Carlson R. M. K., Melosh N. A., Shen Z.-X. Physical properties of materials derived from diamondoid molecules. Reports on Progress in Physics, 2015, 78 (1), P. 016501.

33. Garcia J. C., Assali L. V. C., Machado W. V. M., Justo J. F. Crystal engineering using functionalized adamantane. Journal of Physics: Condensed Matter, 2010, 22 (31), P. 315303.

34. Garcia J. C., Justo J. F., Machado W. V. M., Assali L. V. C. Functionalized adamantane: Building blocks for nanostructure self-assembly. Phys. Rev. B, 2009, 80 (12), P. 125421.

35. Mujica A., Rubio A., Muñoz A., Needs R. J. High-pressure phases of group-IV, III-V, and II-VI compounds. Rev. Mod. Phys., 2003, 75 (3), P. 863–912.

36. Johnston R. L., Hoffmann R. Superdense carbon, C8: supercubane or analog of γ-silicon? Journal of the American Chemical Society, 1989, 111 (3), P. 810–819.

37. Correa A. A., Bonev S. A., Galli G. Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory. Proceedings of the National Academy of Sciences, 2006, 103 (5), P. 1204–1208.

38. Mailhiot C., Yang L. H., McMahan A. K. Polymeric nitrogen. Phys. Rev. B, 1992, 46 (22), P. 14419–14435.

39. Brazhkin V. V. Metastable phases, phase transformations, and phase diagrams in physics and chemistry. Physics-Uspekhi, 2006, 49 (7), P. 719.

40. Brazhkin V. V. Interparticle interaction in condensed media: some elements are ’more equal than others’. Physics-Uspekhi, 2009, 52 (4), P. 369.


Review

For citations:


Kondrin M.V., Brazhkin V.V. Is graphane the most stable carbon monohydride? Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):44-50. https://doi.org/10.17586/2220-8054-2016-7-1-44-50

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)