Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Electromagnetic radiation by electrons in the corrugated graphene

https://doi.org/10.17586/2220-8054-2016-7-1-51-57

Abstract

The electromagnetic radiation of electrons in the corrugated graphene has been studied in the presence of a transport electric current in the ballistic regime. We considered here the impact of ripples in monolayer graphene on its electromagnetic properties. Electromagnetic radiation was actually calculated with a use of the standard electromagnetic theory. Two cases: those of regular and random structures were analyzed. The nonlinear relationship between the random height function h(x, y) and the gauge field is shown to create a central radiation frequency distribution peak.

About the Authors

S. A. Ktitorov
Ioffe Institute; St. Petersburg Electrotechnical University LETI
Russian Federation

St. Petersburg



R. I. Mukhamadiarov
Ioffe Institute
Russian Federation

St. Petersburg



References

1. Vozmediano M.A.H., Katsnelson M.I., Guinea F. Gauge fields in graphene. Physics Reports, 2010, 496, P. 109–148.

2. Alferov D.F., Bashmakov Yu.A., Cherenkov P.A. Radiation from relativistic electrons in a magnetic undulator. Sov. Phys. Usp., 1989, 32 (3), P. 200–227.

3. Castro Neto A.H., Guinea F., et al. The electronic properties of grapheme. Rev. Mod. Phys., 2009, 81, P. 109–162.

4. Tantiwanichapan K., DiMaria J., Melo S.N. Graphene electronics for terahertz electron-beam radiation. Nanotechnology, 2013, 24, P. 375205–375212.

5. Motz H. Applications of the Radiation from Fast Electron Beams. J. Appl. Phys., 1951, 22, P. 527–535.

6. Mayorov A.S., Gorbachev R.V., et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. arxiv:1103.4510, 2011.

7. Zhan T., Han D., et al. Tunable terahertz radiation from graphene induced by moving electrons. Phys. Rev. B, 2014, 89, 245434 (1-7).

8. Llatser I., Kremers C., et al., Radiation Characteristics of Tunable Graphennas in the Terahertz Band. Phot. Nanostr., 2012, 21, P. 946–952.

9. Castro Neto A.H., Guinea F., et al. The electronic properties of graphene. Rev. of Modern Phys., 2009, 81, P. 109–162.

10. Zulicke U., Winkler R., Bolte J. Nanospintronics meets relativistic quantum physics: Ubiquity of Zitterbewegung effects. Physica E, 2008, 40, P. 1434–1435.

11. Stratonovich R.L. Topics in the theory of random noise. Gordon and Breach Science Publishers, New York – London, 1963, 216 p.

12. Guinea F., Baruch H., Le Doussal P. Gauge field induced by ripples in graphene. Phys. Rev. B, 2008, 77, 205421 (1-8).

13. Combe R., Feix M. Mouvement dun electron dans un ondulateur magnetique. Comt. Rend., 1953, 237, P. 1318–1320.

14. Chernov L.A. The waves in randomly inhomogeneous media. Science, Moscow, 1975.


Review

For citations:


Ktitorov S.A., Mukhamadiarov R.I. Electromagnetic radiation by electrons in the corrugated graphene. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):51-57. https://doi.org/10.17586/2220-8054-2016-7-1-51-57

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)