Electromagnetic radiation by electrons in the corrugated graphene
https://doi.org/10.17586/2220-8054-2016-7-1-51-57
Abstract
The electromagnetic radiation of electrons in the corrugated graphene has been studied in the presence of a transport electric current in the ballistic regime. We considered here the impact of ripples in monolayer graphene on its electromagnetic properties. Electromagnetic radiation was actually calculated with a use of the standard electromagnetic theory. Two cases: those of regular and random structures were analyzed. The nonlinear relationship between the random height function h(x, y) and the gauge field is shown to create a central radiation frequency distribution peak.
About the Authors
S. A. KtitorovRussian Federation
St. Petersburg
R. I. Mukhamadiarov
Russian Federation
St. Petersburg
References
1. Vozmediano M.A.H., Katsnelson M.I., Guinea F. Gauge fields in graphene. Physics Reports, 2010, 496, P. 109–148.
2. Alferov D.F., Bashmakov Yu.A., Cherenkov P.A. Radiation from relativistic electrons in a magnetic undulator. Sov. Phys. Usp., 1989, 32 (3), P. 200–227.
3. Castro Neto A.H., Guinea F., et al. The electronic properties of grapheme. Rev. Mod. Phys., 2009, 81, P. 109–162.
4. Tantiwanichapan K., DiMaria J., Melo S.N. Graphene electronics for terahertz electron-beam radiation. Nanotechnology, 2013, 24, P. 375205–375212.
5. Motz H. Applications of the Radiation from Fast Electron Beams. J. Appl. Phys., 1951, 22, P. 527–535.
6. Mayorov A.S., Gorbachev R.V., et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. arxiv:1103.4510, 2011.
7. Zhan T., Han D., et al. Tunable terahertz radiation from graphene induced by moving electrons. Phys. Rev. B, 2014, 89, 245434 (1-7).
8. Llatser I., Kremers C., et al., Radiation Characteristics of Tunable Graphennas in the Terahertz Band. Phot. Nanostr., 2012, 21, P. 946–952.
9. Castro Neto A.H., Guinea F., et al. The electronic properties of graphene. Rev. of Modern Phys., 2009, 81, P. 109–162.
10. Zulicke U., Winkler R., Bolte J. Nanospintronics meets relativistic quantum physics: Ubiquity of Zitterbewegung effects. Physica E, 2008, 40, P. 1434–1435.
11. Stratonovich R.L. Topics in the theory of random noise. Gordon and Breach Science Publishers, New York – London, 1963, 216 p.
12. Guinea F., Baruch H., Le Doussal P. Gauge field induced by ripples in graphene. Phys. Rev. B, 2008, 77, 205421 (1-8).
13. Combe R., Feix M. Mouvement dun electron dans un ondulateur magnetique. Comt. Rend., 1953, 237, P. 1318–1320.
14. Chernov L.A. The waves in randomly inhomogeneous media. Science, Moscow, 1975.
Review
For citations:
Ktitorov S.A., Mukhamadiarov R.I. Electromagnetic radiation by electrons in the corrugated graphene. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):51-57. https://doi.org/10.17586/2220-8054-2016-7-1-51-57