Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Macroscopic thermoelectric efficiency of carbon nanocomposites

https://doi.org/10.17586/2220-8054-2016-7-6-919-924

Abstract

The subject of this study is the thermoelectric efficiency (Z) and the thermoelectric parameter (ZT) of carbon nanocomposites, namely, the structures consisting of graphite-like (gr) and diamond-like (d) regions made of sp2 and sp3 hybridized carbon atoms, respectively. The impact of heat transfer across the boundary between sp2 and sp3 areas is analyzed for the first time. It is shown that the interfacial thermal resistance (Kapitza resistance) is not lower than the thermal resistance in the macroscopic gr region. The influence of various factors on the Kapitza resistance is analyzed. The value of ZT ≈ 3.5 at room temperature, taking into account the interfacial thermal resistance, is significantly higher than it would be in gr films (ZT ≈ 0.75).

About the Authors

E. D. Eidelman
Ioffe Physical Technical Institute; Saint Petersburg State Chemical-Pharmaceutical Academy
Russian Federation

26 Politekhnicheskaya, 194021 Saint Petersburg; 14 Professora Popova, 197376 Saint Petersburg



A. P. Meilakhs
Ioffe Physical Technical Institute
Russian Federation

26 Politekhnicheskaya, 194021 Saint Petersburg



References

1. Heremans J.P. Thermoelectricity: The ugly duckling. Nature, 2014, 508, P. 327–328.

2. Enhanced thermoelectric power in bismuth nanocomposites. Patent 6670.539 United States. Joseph Pierre Heremans, Cristofer Mark Thrush, Donald T. Morecli, 2003.

3. Wang Y., Jaiswal M., Lin M., Saha S., Ozyilmaz B., Loh K.P. Electronic properties of nanodiamond decorated graphene. ACS Nana, 2012, 6(2), P. 1018–1025.

4. Vul’ A., Reich K., Eidelman E., Terranova M.L., Ciorba A., Orlanducci S., Sessa V., Rossi M. A Model of Field Emission from Carbon Nanotubes Decorated by Nanodiamons. Advanced Science Letters, 2010, 3, P. 1–8.

5. The thermoelectric element. Invention. Patent 2,376,681 Russia. Vul A.Ya., Eidelman E.D. The legal owner of Physics – Technical Institute. AF Ioffe RAS, 2008.

6. Zhao L.-D., Lo S-H., Zhang Y., Sun H., Tan G., Uher C., Wolverton C., Dravid V.P., Kanatzidis M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2013, 508, P. 373–377.

7. Krueger A., Kataoka F., Ozawa M., Fujino T., Suzuki Y., Aleksenskii A.E., Vul’A.Ya., Osawa E. Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon, 2005, 43, P. 1722–1726.

8. Eydelman E.D., Siklitsky V.I., Sharonova L.V., Yagovkina M.A., Vul’ A.Ya., Takahashi M., Inakuma M., Ozawa M., Osawa E. A stable suspension of single ultrananocrystalline diamond particles. Diamond and Related Materials, 2005, 14, P. 1765–1769.

9. Vul’ A.Ya., Eidelman E.D., Inakuma M., Osawa E. Correlation between viscosity and absoption of electromagnetic waves in an aqueous UNCD suspension. Diamond and Related Materials, 2007, 16, P. 2023–2028.

10. Williams O., Hees A., Dieker C., Jager W., Kirste L, Nebel C. Size-dependent reactivity of diamond nanoparticles. ACS Nano, 2010, 4, P. 4824–4830.

11. Aleksenskii A., Eydelman E., Vul’ A.Ya. Deaglomeration of detonation nanodiamonds. Nanosci. Nanotechnol. Lett., 2011, 3, P. 68–74.

12. Kidalov S.V., Shakhov F.M., Lebedev V.T., Orlova D.N., Grushko Y.S. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds. Crystallogr. Rep., 2011, 56(7), P. 1181–1185.

13. Eidelman E., Vul’ A.Ya. The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of electrons. Journal of Physics: Condensed Matter, 2007, 19, P. 1–8.

14. Koniakhin S.V., Eidelman E.D. Phonon drag thermopower in graphene in equipartition regime. EuroPhysLett., 2013, 103(8), P. 1–6.

15. Lifshitz E.M., Pitaevskii L.P. Physical kinetics. Pergamon International Library of Science, Technology, Engineering and Social Studies. 2008, 482 p.

16. Efros A.L. Physics and Geometry of Disorder. Percolation Theory. Imported Pubn, 2004, 256 p.

17. Meilakhs A.P., Eidelman E.D. Overheating or overcooling of electrons in a metal because of the effect of an interface with an insulator. JETP. Lett., 2014, 100(2), P. 81–85.

18. Eidelman E.D. Estimation of the contact area of solids by electrothermal analogy. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(4), P. 547–550.

19. Costescu R.M., Wall M.A., Cahill D.G. Thermal conductivity of thin films. Measurements and understanding. Phys. Rev B., 2003, 67, P. 054302-1-8.

20. Prut V.V., IFE Working Paper, 2007, 30, P. 6462.

21. Properties and Characteristics of Graphite. Entegris, Inc., 2013, 38 p.

22. Levinshtein M., Rumyantsev S., Shur M. Handbook series on Semiconductor Parameters. World Scientific, Singapore, 2007, 219 p.

23. Kidalov S.V., Shakhov F.M., Vul’ A.Ya. Thermal conductivity of nanocomposites based on diamonds nanodiamonds. Diamond and Related Materials, 2007, 17, P. 844–847.

24. Kidalov S.V., Shakhov F.M., Vul’ A.Ya. Thermal conductivity of sintered nanodiamonds and microdiamonds. Diamond and Related Materials, 2008, 17, P. 844–847.

25. Kidalov S.V., Shakhov F.M., Vul’ A.Ya., Ozerin A.N. Grain-boundary heat conductance in nanodiamond composites. Diamond and Related Materials, 2010, 19, P. 976–980.

26. Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S. R. Nanoscale thermal transport. Journal of Applied Physics, 2003, 93, P. 793–798.

27. Losego M.D., Grady M.E., Sottos N.R., Cahill D.G., Braun P.V. Effects of chemical bonding on heat transport across interfaces. Nature materials, 2012, 11, P. 502–506.

28. Cahill D.G., Braun P.V., Chen G., Clarke D.R., Fan S., Goodson K.E., Keblinski P., King W.P., Mahan G.D., Majumdar A., Maris H.J., Phillpot S.R., Pop E., Shi L. Nanoscale thermal transport. II. 2003-2012. Applied physics reviews, 2014, 1, P. 011305-1-45.

29. Zolotukhin I.V., Golev I.M., Markova A.E., Panin Yu.V., Sokolov Yu.V., Tkachev A.G., Negrov V.L. Some properties of solid fractal structures in carbon nanofibers. Technical Physics Letters, 2006, 32(3), P. 199–200.


Review

For citations:


Eidelman E.D., Meilakhs A.P. Macroscopic thermoelectric efficiency of carbon nanocomposites. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(6):919-924. https://doi.org/10.17586/2220-8054-2016-7-6-919-924

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)