Double-layered boron. The adsorption of gas-phase atom
https://doi.org/10.17586/2220-8054-2018-9-3-330-334
Abstract
In this paper, we have considered hexagonal double-layered boron and its adsorption properties in particular. The main adsorption characteristics have been elucidated by using the semi-empirical quantum-chemical scheme MNDO. We have investigated both external adsorption and internal infiltration of atoms (H, O, F, Cl) between boron monolayers.
About the Authors
E. V. BorozninaRussian Federation
University Ave. 100, Volgograd 400062
O. A. Kakorina
Russian Federation
University Ave. 100, Volgograd 400062
M. B. Belonenko
Russian Federation
University Ave. 100, Volgograd 400062
References
1. Wang K.-P., Teng H. Structural feature and double-layer capacitive performance of porous carbon powder derived from polyacrylonitrilebased carbon fiber. J. Electrochem. Soc., 2007, 154 (11), P. 993–998.
2. Wang Y., Fugetsu B., Wang Z., Gong W. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Sci. Rep., 2017, 7, P. 40259.
3. Oganov A.R., Guisinger N.P. Nanomaterials, synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 350 (6267), P. 1513–1516.
4. Zhang X., Hu J., et al. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale, 2016, 8 (33), P. 15340.
5. Xiao R.C., et al. Enhanced superconductivity by strain and carrier-doping in borophene: A first principles prediction. Applied Physics Letters, 2016, 109, P. 122604.
6. Chernozatonskii L.A., Sorokin P.B., Yakcobson B.I. New boron barrelenes and tubulenes. JETP Lett., 2008, 87 (9), P. 489–493.
7. Penev E.S., Bhowmick S., Sadrzadeh A., Yakobson B.I. Polymorphism of two-dimensional boron. Nano Lett., 2012, 12 (5), P. 2441–2445.
8. Enyashin A.N., Bamburov V.G., Ivanovskii A.L. Composition, stability, and elastic moduli of higher allotropes of boron (β-B and tII-B) according to SCC-DFTB calculations. Doklady Physical Chemistry, 2011, 438 (2), P. 118–121.
9. Shirai K., Uemura N., Dekura H. Structure and stability of pseudo-cubic tetragonal boron. Jpn J. Appl. Phys., 2017, 56, 5S3.
10. Khairullin A.R., Nikolaeva M.N., Bugrov A.N. Resistance of composite films based on polystyrene and graphene oxide. Nanosystems: Phys. Chem. Math., 2016, 7 (6), P. 1055–1058.
11. Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organic-inorganic compositions. Nanosystems: Phys. Chem. Math., 2017, 8 (4), P. 476–502.
12. Kah Chun Lau, Ravindra Pandey. Stability and electronic properties of atomistically-engineered 2D boron sheets. J. Phys. Chem. C, 2007, 111 (7), P. 2906–2912.
13. Dewar M.J.S., Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and Parameters. J. Am. Chem. Soc., 1977, 99 (15), P. 4899–4907.
14. Boroznina E.V, Zhiganova T.A., Boroznin S.V. Reseach of vacancy defect formation on the surface of two-dimensional boron sheets. J. Phys.: Conf. Ser., 2015, 586, P. 012010.
Review
For citations:
Boroznina E.V., Kakorina O.A., Belonenko M.B. Double-layered boron. The adsorption of gas-phase atom. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(3):330-334. https://doi.org/10.17586/2220-8054-2018-9-3-330-334