Antibacterial activity of Amikacin-immobilized detonation nanodiamond
https://doi.org/10.17586/2220-8054-2017-8-4-531-534
Abstract
Detonation nanodiamonds (NDs) with chlorinated (ND–Cl) and carboxylated (ND–COOH) surfaces were obtained. The broad-spectrum antibiotic Amikacin (Amik) was covalently grafted to the chlorinated surface (ND–Amik) and immobilized by adsorption to carboxylated surface (Amik/ND–COOH). Biological testing in vitro showed the presence of antibacterial activity of the obtained samples against Staphylococcus aureus FDA P209 and Escherichia coli ATCC 25922, close to activity of free amikacin. It was revealed that to maintain antibacterial activity of the samples after their preliminary treatment, important factors such as the use of antioxidants (hydrosulfite and sodium citrate) and lyophilization were necessary.
Keywords
About the Authors
A. S. SolomatinRussian Federation
Ryazan; Moscow
R. Yu. Yakovlev
Russian Federation
Ryazan; Moscow
O. V. Efremenkova
Russian Federation
Moscow
I. G. Sumarukova
Russian Federation
Moscow
I. I. Kulakova
Russian Federation
Moscow
G. V. Lisichkin
Russian Federation
Moscow
References
1. Nanotherapeutics: Drug Delivery Concepts in Nanoscience. Edited by Lamprecht A. CRC Press, Taylor and Francis Group, Boca Raton, 2008, 292 pp.
2. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., Litvinchuk L.F., Dobritsa V.P. Biological effect of zirconium dioxidebased nanoparticles. Nanosystems: physics, chemistry, mathematics, 2017, 8(3), P. 391–396.
3. Popova N.R., Popov A.L., Shcherbakov A.B., Ivanov V.K. Layer-by-layer capsules as smart delivery systems of CeO<sub>2</sub> nanoparticle based theranostic agents. Nanosystems: physics, chemistry, mathematics, 2017, 8(2), P. 282–289.
4. Zhang X., Hu W., Li J., Tao L., Wei Y. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res., 2012, 1, P. 62–68.
5. Krueger A. The structure and reactivity of nanoscale diamond. J. Mater. Chem., 2008, 18, P. 1485–1492.
6. Shenderova O.A., McGuire G.E. Science and engineering of nanodiamond particle surfaces for biological applications (Review). Biointerphases, 2015, 10(3), P. 030802.
7. Shugalei I.V., Voznyakovskii A.P., Garabadzhiu A.V., Tselinskii I.V., Sudarikov A.M., Ilyushin M.A. Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russ. J. Gen. Chem., 2013, 83(5), P. 851–883.
8. Liu K.K., Zheng W.W., Wang C.C., Chiu Y.C., Cheng C.L., Lo Y.S., Chen C., Chao J.I. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology, 2010, 21, P. 1–14.
9. Chen M., Pierstorff E.D., Lam R., Li S.Y., Huang H., Osawa E., Ho D. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano, 2009, 3(7), P. 2016–2022.
10. Chow E.K., Zhang X.Q., Chen M., Lam R., Robinson E., Huang H., Schaffer D., Osawa E., Goga A., Ho D. Nanodiamond therapeutic delivery agents mediated enhanced chemoresistant tumor treatment. Sci. Tran. Med., 2011, 3(73), P. 73ra21.
11. Pham D.D., Fattal E., Tsapis N. Pulmonary drug delivery systems for tuberculosis treatment. Int. J. Pharm., 2015, 478, P. 517–529.
12. Xie J., Talaska A.E., Schacht J. New developments in aminoglycoside therapy and ototoxicity. Hear Res., 2011, 281, P. 28–37.
13. Brummetti R.E., Fox K.E. Aminoglycoside-induced hearing loss in humans. Antimicrob Agents Chemother., 1989, 33(6), P. 797–800.
14. Hottendorf G.H., Gordon L.L. Comparative low-dose nephrotoxicities of gentamicin, tobramycin, and amikacin. Antimicrob. Agents Chemother., 1980, 18(1), P. 176–181.
15. Method for selective final purification of nanodiamond, Patent. 2506095 Russia: MPK A61 K 47/04, C01 B 31/06, B82 B 3/00, B82 Y 5/00, Jakovlev R.J., Solomatin A.S., Kulakova I.I., Lisichkin G.V., Korolev K.M., Leonidov N.B., N 2012157038/15, 12 pp.
16. Yakovlev R.Y., Solomatin A.S., Leonidov N.B., Kulakova I.I., Lisichkin G.V. Detonation diamond – a perspective carrier for drug delivery systems. Rus. J. Gen. Chem., 2014, 84(2), P. 379–390.
17. Yakovlev R.Y., Osipova A.S., Solomatin A.S., Kulakova I.I., Murav’eva G.P., Avramenko N.V., Leonidov N.B., Lisichkin G.V. An approach to unification of the physicochemical properties of commercial detonation nanodiamonds. Russ. J. Gen. Chem., 2015, 85(6), P. 1565–1574.
Review
For citations:
Solomatin A.S., Yakovlev R.Yu., Efremenkova O.V., Sumarukova I.G., Kulakova I.I., Lisichkin G.V. Antibacterial activity of Amikacin-immobilized detonation nanodiamond. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):531-534. https://doi.org/10.17586/2220-8054-2017-8-4-531-534