Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Antibacterial activity of Amikacin-immobilized detonation nanodiamond

https://doi.org/10.17586/2220-8054-2017-8-4-531-534

Abstract

   Detonation nanodiamonds (NDs) with chlorinated (ND–Cl) and carboxylated (ND–COOH) surfaces were obtained. The broad-spectrum antibiotic Amikacin (Amik) was covalently grafted to the chlorinated surface (ND–Amik) and immobilized by adsorption to carboxylated surface (Amik/ND–COOH). Biological testing in vitro showed the presence of antibacterial activity of the obtained samples against Staphylococcus aureus FDA P209 and Escherichia coli ATCC 25922, close to activity of free amikacin. It was revealed that to maintain antibacterial activity of the samples after their preliminary treatment, important factors such as the use of antioxidants (hydrosulfite and sodium citrate) and lyophilization were necessary.

About the Authors

A. S. Solomatin
Ryazan State Medical University; Lomonosov Moscow State University
Russian Federation

Ryazan; Moscow



R. Yu. Yakovlev
Ryazan State Medical University; Lomonosov Moscow State University; Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academ of Sciences
Russian Federation

Ryazan; Moscow



O. V. Efremenkova
Gause Institute of New Antibiotics
Russian Federation

Moscow



I. G. Sumarukova
Gause Institute of New Antibiotics
Russian Federation

Moscow



I. I. Kulakova
Lomonosov Moscow State University
Russian Federation

Moscow



G. V. Lisichkin
Lomonosov Moscow State University
Russian Federation

Moscow



References

1. Nanotherapeutics: Drug Delivery Concepts in Nanoscience. Edited by Lamprecht A. CRC Press, Taylor and Francis Group, Boca Raton, 2008, 292 pp.

2. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., Litvinchuk L.F., Dobritsa V.P. Biological effect of zirconium dioxidebased nanoparticles. Nanosystems: physics, chemistry, mathematics, 2017, 8(3), P. 391–396.

3. Popova N.R., Popov A.L., Shcherbakov A.B., Ivanov V.K. Layer-by-layer capsules as smart delivery systems of CeO<sub>2</sub> nanoparticle based theranostic agents. Nanosystems: physics, chemistry, mathematics, 2017, 8(2), P. 282–289.

4. Zhang X., Hu W., Li J., Tao L., Wei Y. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res., 2012, 1, P. 62–68.

5. Krueger A. The structure and reactivity of nanoscale diamond. J. Mater. Chem., 2008, 18, P. 1485–1492.

6. Shenderova O.A., McGuire G.E. Science and engineering of nanodiamond particle surfaces for biological applications (Review). Biointerphases, 2015, 10(3), P. 030802.

7. Shugalei I.V., Voznyakovskii A.P., Garabadzhiu A.V., Tselinskii I.V., Sudarikov A.M., Ilyushin M.A. Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russ. J. Gen. Chem., 2013, 83(5), P. 851–883.

8. Liu K.K., Zheng W.W., Wang C.C., Chiu Y.C., Cheng C.L., Lo Y.S., Chen C., Chao J.I. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology, 2010, 21, P. 1–14.

9. Chen M., Pierstorff E.D., Lam R., Li S.Y., Huang H., Osawa E., Ho D. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano, 2009, 3(7), P. 2016–2022.

10. Chow E.K., Zhang X.Q., Chen M., Lam R., Robinson E., Huang H., Schaffer D., Osawa E., Goga A., Ho D. Nanodiamond therapeutic delivery agents mediated enhanced chemoresistant tumor treatment. Sci. Tran. Med., 2011, 3(73), P. 73ra21.

11. Pham D.D., Fattal E., Tsapis N. Pulmonary drug delivery systems for tuberculosis treatment. Int. J. Pharm., 2015, 478, P. 517–529.

12. Xie J., Talaska A.E., Schacht J. New developments in aminoglycoside therapy and ototoxicity. Hear Res., 2011, 281, P. 28–37.

13. Brummetti R.E., Fox K.E. Aminoglycoside-induced hearing loss in humans. Antimicrob Agents Chemother., 1989, 33(6), P. 797–800.

14. Hottendorf G.H., Gordon L.L. Comparative low-dose nephrotoxicities of gentamicin, tobramycin, and amikacin. Antimicrob. Agents Chemother., 1980, 18(1), P. 176–181.

15. Method for selective final purification of nanodiamond, Patent. 2506095 Russia: MPK A61 K 47/04, C01 B 31/06, B82 B 3/00, B82 Y 5/00, Jakovlev R.J., Solomatin A.S., Kulakova I.I., Lisichkin G.V., Korolev K.M., Leonidov N.B., N 2012157038/15, 12 pp.

16. Yakovlev R.Y., Solomatin A.S., Leonidov N.B., Kulakova I.I., Lisichkin G.V. Detonation diamond – a perspective carrier for drug delivery systems. Rus. J. Gen. Chem., 2014, 84(2), P. 379–390.

17. Yakovlev R.Y., Osipova A.S., Solomatin A.S., Kulakova I.I., Murav’eva G.P., Avramenko N.V., Leonidov N.B., Lisichkin G.V. An approach to unification of the physicochemical properties of commercial detonation nanodiamonds. Russ. J. Gen. Chem., 2015, 85(6), P. 1565–1574.


Review

For citations:


Solomatin A.S., Yakovlev R.Yu., Efremenkova O.V., Sumarukova I.G., Kulakova I.I., Lisichkin G.V. Antibacterial activity of Amikacin-immobilized detonation nanodiamond. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):531-534. https://doi.org/10.17586/2220-8054-2017-8-4-531-534

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)