Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Magnetically tunable viscoelastic response of soft magnetic nanocomposites with wormlike surfactant micellar matrix

https://doi.org/10.17586/2220-8054-2018-9-3-335-341

Abstract

Magnetorheological effects in viscoelastic soft magnetic nanocomposites (SMNs) composed of submicron magnetite particles embedded in a network of wormlike micelles (WLMs) of surfactant were studied in a homogeneous magnetic field. In field, the SMNs showed rapid rise of storage and loss moduli by a few orders of magnitude as a result of the ordering of magnetized particles into chain-like or columnar structures. Moreover, solid-like behavior and yield stress of the SMNs were observed. Study of rheological response on periodic switching of field revealed that the initial viscoelasticity of SMNs did not recover completely after removing field, which was attributed to extremely long relaxation time of the WLM network. It was found that the variation of storage and moduli loss was associated with the stepwise change in magnetic field; this can be fitted by two-exponential functions, a characteristic time for the slower process being almost the same as the relaxation time of SMN without field, indicating that this process is essentially determined by the viscoelastic properties of the matrix.

About the Authors

V. S. Molchanov
Physics Department, Moscow State University
Russian Federation

119991 Moscow



I. A. Klepikov
Moscow State University of Education
Russian Federation

119991 Moscow



I. V. Razumovskaya
Moscow State University of Education
Russian Federation

119991 Moscow



O. E. Philippova
Physics Department, Moscow State University
Russian Federation

119991 Moscow



References

1. Odenbach S. Recent Progress in Magnetic Fluid Research. J. Phys.: Condens. Matter, 2004, 16, P. R1135–R1150.

2. Park B.J., Fang F.F., Choi H.J. Magnetorheology: Materials and Application. Soft Matter, 2010, 6, P. 5246–5253.

3. De Vicente J., Klingenberg D.J., Hidalgo-Alvarez R. Magnetorheological Fluids: a Review. Soft Matter, 2011, 7, P. 3701–3710.

4. Barabanova A., Molchanov V., Philippova O., Khokhlov A., Magnetorheological Fluids Based on Associating Polymers. Macromol. Symp., 2014, 337, P. 80–86.

5. Filipcsei G., Csetneki I., Szilgyi A., Zrinyi M. Magnetic Field-Responsive Smart Polymer Composites. In Advances in Polymer Science, Oligomers, Polymer Composites, Molecular Imprinting, Springer-Verlag, Berlin, 2007, P. 137–189.

6. Molchanov V.S., Stepanov G.V., Vasiliev V.G., Kramarenko E.Yu., Khokhlov A.R., Xu Z.-D., Guo Y.-Q. Viscoelastic Properties of Magnetorheologicla Elastomers for Damping Applications. Macromol. Mater. Eng., 2014, 299, P. 1116–1125.

7. Zhou Y., Sharma N., Deshmukh P., Lakhman R.K., Jain M., Kasi R.M. Hierarchically Structured Free-Standing Hydrogels with Liquid Crystalline Domains and Magnetic Nanoparticles as Dual Physical Cross-Linkers. J. Am. Chem. Soc., 2012, 134, P. 1630–1641.

8. An H.-N., Sun B., Picken S.J., Mendes E. Long Time Response of Soft Magnetorheological Gels. J. Phys. Chem. B, 2012, 116, P. 4702– 4711.

9. McLeish T.C.B., Jordan T., Shaw M.T. Viscoelastic Response of Electrorheological Fluids. I. Frequency dependence. J. Rheol., 1991, 35, P. 427–448.

10. Ginder J.M., Davis L.C., Elie L.D. Rheology of Magnetorheological Fluids: Models and Measurements. Int. J. Mod. Phys. B, 1996, 10, P. 3293–3303.

11. Claracq J., Sarrazin J., Montfort J.-P. Viscoelastic Properties of Magnetorheological Fluids. Rheol. Acta, 2004, 43, P. 38–49.

12. De Vicente J., Segovia-Guti´errez J.P., Andablo-Reyes E., Vereda F., Hidalgo-Alvarez, R. Dynamic Rheology of Sphere- and Rod-Based Magnetorheological Fluids. J. Chem. Phys., 2009, 131, P. 194902.

13. An H.-N., Sun B., Picken S.J., Mendes E. Long Time Response of Soft Magnetorheological Gels. J. Phys. Chem. B, 2012, 116, P. 4702– 4711.

14. Mitsumata T., Honda A., Kanazawa H., Kawai M. Magnetically Tunable Elasticity for Magnetic Hydrogels Consisting of Carrageenan and Carbonyl Iron Particles. J. Phys. Chem. B, 2012, 116, P. 12341–12348.

15. Pletneva V.A., Molchanov V.S., Philippova O.E. Viscoelasticity of Smart Fluids Based on Wormlike Surfactant Micelles and Oppositely Charged Magnetic Particles. Langmuir, 2015, 31, P. 110–119.

16. Magid L.J. The Surfactant-Polyelectrolyte Analogy. J. Phys. Chem. B, 1998, 102, P. 4064–4074.

17. Oda R., Narayanan J., Hassan P.A., Manohar C., Salkar R.A., Kern F., Candau S.J. Effect of the Lipophilicity of the Counterion on the Viscoelasticity of Micellar Solutions of Cationic Surfactants. Langmuir, 1998, 14, P. 4364–4572.

18. Molchanov V.S., Philippova O.E. Dominant Role of Wormlike Micelles in Temperature-Responsive Viscoelastic Properties of their Mixtures with Polymeric Chains. J. Colloid Interface Sci., 2013, 394, P. 353–359.

19. Kwiatkowski A.L., Molchanov V.S., Orekhov A.S., Vasiliev A.L., Philippova O.E. Impact of Salt Co- and Counterions on Rheological Properties and Structure of Wormlike Micellar Solutions. J. Phys. Chem. B, 2016, 120, P. 12547–12556.

20. Shibaev A.V., Tamm M.V., Molchanov V.S., Rogachev A.V., Kuklin A.I., Dormidontova E.E., Philippova O.E. How a Viscoelastic Solution of Wormlike Micelles Transforms into a Microemulsion upon Absorption of Hydrocarbon: New Insight. Langmuir, 2014, 30, P. 3705–3714.

21. Philippova O.E., Chtcheglova L.A., Karybiants N.S., Khokhlov A.R. Two Mechanisms of Gel/Surfactant Binding. Polymer Gels Networks, 1998, 6, P. 409–421.

22. Kwiatkovski A.L., Sharma H., Molchanov V.S., Orekhov A.S., Vasiliev A.L., Dormidontova E.E., Philippova O.E. Wormlike Surfactant Micelles with Embedded Polymer Chains. Macromolecules, 2017, 50, P. 7299–7308.

23. Chin B.D., Park J.H., Kwon M.H., Park O.O. Rheological Properties and Dispersion Stability of Magnetorheological (MR) Suspensions. Rheol. Acta, 2001, 40, P. 211–219.

24. Martin J.M., Odinek J. Evolution of Structure in Quiescent Electrorheological Fluid. Phys. Ref. Lett., 1992, 69, P. 1524–1528.

25. Otsubo Y. Electrorheological Properties of Barium Titanate Suspensions under Oscillatory Shear. Colloids Surf., 1991, 58, P. 73–86.

26. Parthasarathy M., Ahn K.H., Belongia B., Klingenberg D.J. The Role of Suspension Structure in the Dynamic Response of Electrorheological Suspensions. Int. J. Mod. Phys. B, 1994, 8, P. 2789–2809.

27. L´opez-L´opez M.T., Rodriguez-Arco L., Zubarev A., Iskakova L., Dur´an D.G. Effect of Gap Thickness on the Viscoelasticity of Magnetorheological Fluids. J. Appl. Phys., 2010, 108, P. 083503.

28. Viota J.L., Delgado A.V., Arias J.L., Dur´an J.D.G. Study of the Magnetorheological Response of Aqueous Magnetite Suspensions Stabilized by Acrylic Acid Polymers. J. Colloid Interface Sci., 2008, 324, P. 199–204.

29. Li W.H., Chen G., Yao S.H. Viscoelastic Properties of MR Fluids. Smart Mater. Struct., 1999, 8, P. 460–468.

30. L´opez-L´opez M.T., G´omez-Ramirez A., Rodriguez-Arco L., Dur´an D.G., Iskakova L., Zubarev A. Colloids on the Frontier of Ferrofluids. Rheological Properties. Langmuir, 2012, 28, P. 6232–6245.


Review

For citations:


Molchanov V.S., Klepikov I.A., Razumovskaya I.V., Philippova O.E. Magnetically tunable viscoelastic response of soft magnetic nanocomposites with wormlike surfactant micellar matrix. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(3):335-341. https://doi.org/10.17586/2220-8054-2018-9-3-335-341

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)