Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

High-temperature superconductivity: From macro- to nanoscale structures

https://doi.org/10.17586/2220-8054-2016-7-6-941-970

Abstract

The analysis of achievements, problems and prospects of high-temperature superconductivity (HTSC) in the macro- and nanostructured materials has been given. The main experimental results and theoretical models describing the physical mechanisms of the superconductivity appearance at phenomenological and microscopic levels, including change in the energy spectrum of atoms in these materials with the advent of the ‘superconducting’ gap at temperatures below the critical transition, as well as the above-critical temperature ‘pseudo-gap’ have been analyzed. Although the origin of the pseudo-gap is not completely understood, it can be considered as an independent phase transition in the substance prior to the transition to the zero resistance state and insusceptibility (or insensitivity) to external magnetic field in high-temperature superconductors. Features of multi-gap and gapless superconducting materials as well as their ability to further increase the temperature of supercritical transition are discussed. Large resources to create the necessary electron and phonon spectra in the process of high-temperature superconductivity formation are associated with the use of nanoscale structures and nanoparticles of conductors and dielectrics. Electrical conductive contacts between nanoparticles and tunnel chains of nanoclusters, where delocalized electron spectra form similar energy shells to the atomic or nuclear shells, play a significant part here. It is required to further investigate the occurrence of high-temperature superconductivity at the level of interphase layers (non-autonomous phases) in nanostructures containing a large fraction of the substance in this condition. It is essential to develop adequate methods for synthesis of nanoparticles of variable size, structure and morphology, as well as techniques for their consolidation that would ensure the preservation of superconductivity of individual nanoparticles, their chemical, thermal, magnetic and current stability in the dissipative processes with functional and fluctuation effects.

About the Author

A. N. Kovalenko
Ioffe Institute
Russian Federation

St. Petersburg



References

1. Physical encyclopedia. Chief editor A.M. Prokhorov. Great Russian encyclopedia, 1998, Moscow, (in Russian).

2. Kamerlingh-Onnes H. Further experiments with liquid helium. On the electrical resistance of pure metals, etc. VI. On the sudden change in the rate at which the resistance of mercury disappears. Comm. Phys. Lab. Univ. Leiden, 1911, 124.

3. Meissner W., Ochsenfeld R. Ein neuer Effekt bei Eintritt der supraleitfhigkeit. Naturwiss, 1933, 33 (44), P. 787–788.

4. Meissner W. New work on superconductivity. Uspekhi Fizicheskikh Nauk, 1935, 15 (2), P. 208–220 (in Russian).

5. London F., London H. The Electromagnetic Equations of the Supraconductor. Proc. Roy. Soc. London, 1935, 71, P. 71–88.

6. The Scientific Letters and Papers of James Clerk Maxwell (1846–1862). Ed. P.M. Harman. Cambridge: University Press, 1990–2002, 1–3.

7. Ginzburg V.L., Landau, L.D. On the theory of superconductivity. JETP, 1959, 20, P. 1064 (in Russian).

8. Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. Methods of quantum field theory in statistical physics. Fizmatgiz, Moscow, 1962 (in Russian).

9. Belyavskii V.I., Kopaev Yu.V. Ginzburg-Landau equations for high-temperature superconductors. Phys. Usp., 2007, 50, P. 540–545.

10. Bardeen J., Cooper L.N., Schrieffer J.R. Theory of Superconductivity. Phys. Rev., 1957, 108, P. 1175.

11. Landau L.D., Lifshitz E.M. Curse of Theoretical physics, 9: Statistical physics, Part 2. Nauka, Moscow, 1985 (in Russian).

12. Feynman R., Leighton R., Sands M. The Feynman lectures on Physics. Addison-Wesley Publishing Company, Ing, Reading, Massachusetts, Palo Alto. London. 1964, 2.

13. Frohlich H. Theory of the superconducting state. ¨ Phys. Rev., 1950, 79 (5), P. 845.

14. Maxwell E. Isotope Effect in the Superconductivity of Mercury. Phys. Rev., 1950, 78, P. 477.

15. Reynolds C.A., Serin B., Wright W.H., Nesbitt L.B. Superconductivity of isotopes of mercury. Phys. Rev., 1950, 78, P. 487.

16. Belyavskii V.I., Kopaev Yu.V. First International Conference ‘Fundamental Problems of High-Temperature Superconductivity’. Phys. Usp., 2005, 48, P. 177–182.

17. Fedyukin V.K. The fundamentals of alternative ‘theory of superconductivity’. SpbGIEU, St. Petersburg, 2009 (in Russian).

18. Geballe T.H., Hulm J.K. Bernd Theodor Matthias. National Academies Press: Biographical Memoirs, 1996, 70.

19. Schrieffer J.R. Theory of Superconductivity. Perseus Books, New York, 1964.

20. de Genes P.G. Superconductivity of metals and alloys. W.A. Benjamin, New York, 1966.

21. Lynton E.A. Superconductivity. Methuen & Co. Ltd, London, 1969.

22. Ginzburg V.L. The problem of high-temperature superconductivity. II. Sov. Phys. Usp., 1970, 13, P. 335–352.

23. Tinkham M. Introduction to superconductivity. McGraw Hil, New York, 1975.

24. Vonsovskii S.V., Izyumov Yu.A., Kurmaev E.Z. Superconductivity of transition metals, their alloys and compounds. Nauka, Moscow, 1977 (in Russian).

25. Schmidt V. Itroduction to the physics of superconductors. Nauka, Moscow, 1982 (in Russian).

26. Abrikosov A.A. The fundamentals of the theory of metals. Nauka, Moscow, 1987 (in Russian).

27. Ginzburg V.L. On heat transfer (heat conduction) and the thermoelectric effect in the superconducting state. Phys. Usp., 1998, 41, P. 307–311.

28. Ginzburg V.L. Superconductivity: the day before yesterday – yesterday – today – tomorrow. Phys. Usp., 2000, 170 (43), P. 573–583.

29. Tretyakov Yu.D., Gudilin E.A. Chemical principles of preparation of metal-oxide superconductors. Russian Chemical Reviews, 2000, 69 (1), P. 3–40 (in Russian).

30. Sadovskii M.V. Pseudogap in high-temperature superconductors. Phys. Usp., 2001, 44, P. 515–539.

31. Ginzburg V.L., Andryushin E.A. Superconductivity. Alpha-M, Moscow, 2006 (in Russian).

32. Maksimov E.G. High-temperature superconductivity: the current state. Phys. Usp., 2000, 43, P. 965–990.

33. Kopaev Yu.V. High-temperature superconductivity models. Phys. Usp., 2002, 45, P. 655–659.

34. Chernoplekov N.A. State of the art in applied high-current superconductivity. Phys. Usp., 2002, 45, P. 659–665.

35. Belyavskii V.I, Kopaev Yu.V. Generalizing considerations about the nature of high-temperature superconductivity (based on the proceedings of M2S-HTSC-VII). Phys. Usp., 2004, 47, P. 409–416.

36. Mourachkine A. Room-Temperature Superconductivity. Cambridge International Science Publishing, Cambridge, 2004.

37. Rumer Y.B., Ryvkin M.S. Thermodynamics, Statistical Physics and Kinetics. Nauka, Moscow, 1977 (in Russian).

38. Antonov Yu.F., Danilevich J.B. The Topological Superconducting Electrical Machines. Fizmatlit, Moscow, 2009 (in Russian).

39. Abrikosov A.A. About the magnetic properties of superconductors of the second group. JETP, 1957, 32, P. 1442 (in Russian).

40. Abrikosov A.A. The type-II superconductors and the vortex lattice (Materials Nobel Lecture, Stockholm 2003 and Science Division, Argonne National Laboratory, Argonne, USA). Uspekhi Fizicheskikh Nauk, 2004, 174 (11), P. 1235–1239 (in Russian).

41. Schubnikov L.B., Chotkewitsch B.I., Schepelev J.D., Rjabinin J.N. Magnetische Eigenschaften supraleitender Metalle und Legierungen. Phys. Z. Sowiet, 1936, 10 (2), P. 165–192.

42. Shubnikov L.V., Khotkevich V.I., Shepelev Yu.D., Ryabinin Yu.N. Magnetic properties of superconducting metals and alloys . JETP, 1937, 7 (2), P. 221–237 (in Russian).

43. Slezov V.V, Papirov I.I., Shepelev A.G. Discovery of the Shubnikov phase (type ii superconductors). National Science Center, Kharkov Institute of Physics and Technology, 2008, 823 (in Russian).

44. Tauble H, Essman U. Die Beobachtung magnetischer Strukturen von Supraleitern zweiter Art. Physica Status Solidi, 1967, 20, P. 95–111.

45. Sarma N.V. Direct evidence for the laminar add flux models of mixed state in type II superconductors. Physics Letters A, 1967, 25 (4), P. 315–316.

46. San-Zham D., Sarma G., Tomas E. Type II superconductivity. Pergamon press, Oxford-London-Edinburgh-New York Toronto – Sydney – Paris – Braunschweig, 1969.

47. Zeeman P. Doubles and triplets in the spectrum produced by external magnetic forces. Phil. Mag., 1897, 44, P. 55.

48. Fulde P., Ferrell R.A. Superconductivity in a Strong Spin-Exchange Field. Phys. Rev. A, 1964, 135, P. 550.

49. Larkin A.I., Ovchinnikov Yu.N. Inhomogeneous state of superconductors. JETP, 1964, 47 (3), P. 1136–1146.

50. Proshin Yu.N., Khusainov M.G. On the manifestations of the state of the Larkin-Ovchinnikov-Fulda-Ferrell in bimetallic structures ferromagnet-superconductor. JETP Letters, 1997, 66 (8), P. 527–532.

51. Anderson P.W. Theory of dirty superconductors. Journal of Physics and Chemistry of Solids, 1959, 11 (1–2), P. 26–30.

52. Babaev E., Speight M. Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent superconductors. Phys. Rev. B, 2005, 72, P. 180502.

53. Moshchalkov V., Menghini M., et al. Type-1.5 Superconductivity. Phys. Rev. Lett., 2009, 102, P. 114501.

54. Vinnikov L.Ya., Karpinski J.,. et al. Vortex structure in MgB2 single crystals observed by the Bitter decoration technique. Phys. Rev. B, 2003, 67, P. 1–3.

55. Gor’kov L.P., Kopnin N.B. Movement vortexes and resistance of superconductors of the second kind in the magnetic field. Uspekhi Fizicheskikh nauk, 1975, 116 (3), P. 413.

56. Mints R.G.,. Rakhmanov A.L. Magnetic instabilities in hard orproviding. Uspekhi Fizicheskikh nauk, 1977, 121 (3), P. 499–524 (in Russian).

57. Malkov M.P., Danilov I.B., Zeldovich A.G. Handbook of physical-technical fundamentals of cryogenics. Energoatomizdat, Moscow, 1985 (in Russian).

58. Yeshurun Y., Malozemoff A.P. Giant Flux Creep and Irreversibility in an Y-Ba-Cu-O Crystal: An Alternative to the Superconducting-Glass Model. Phys. Rev., 1988, 60, P. 2202–2205.

59. Buckel W. Superconductivity: Fundamentals and Applications (Physics). Mir, Moscow, 1975 (in Russian).

60. Postnikov V.S. Physics and chemistry of solid state. Metallurgy, Moscow, 1978 (in Russian).

61. URL: http://elementy.ru/novosti nauki/431450/Sverkhprovodimost.

62. Aksenov V.L. Neutron diffraction cuprate high-temperature superconductors. Uspekhi Fizicheskikh Nauk, 2002, 172 (6), P. 701–705 (in Russian).

63. Langenberg D.N., Scalapino D.J., Taylor B.N. The Josephson Effects. Scientific American, 1966, 214 (5), P. 30.

64. Langenberg, D.N., Scalapino D.J., Taylor B.N. The Josephson effects. Uspekhi Fizicheskikh Nauk, 1967, 91 (2), P. 317–320 (in Russian).

65. Josephson B.D. Possible new effects in superconductive tunnelling. Phys. Lett., 1962, 1 (7), P. 251–253.

66. Anderson P.W., Rowell J.M. Probable observation of the Josephson superconducting tunnelling effect. Phys. Rev. Lett., 1963, 10, P. 230–232.

67. Ponomarev Y.G. Tunnel and St. Andrew spectroscopy of high-temperature superconductors. Uspekhi Fizicheskikh Nauk, 2002, 72 (6), P. 705–711 (in Russian).

68. Andreev A.F. Thermal conductivity of the intermediate state of superconductors. Journal of Experimental and Theoretical Physics, 1964, 46, P. 18–23 (in Russian).

69. Andreev A.F. Electrodynamics of the intermediate state of superconductors. Journal of Experimental and Theoretical Physics, 1966, 51, P. 1510 (in Russian).

70. URL: http://www.nkj.ru/news/24322/.

71. URL: http://elementy.ru/novost_nauki/431568/...Yuriy Erin.

72. Altshuler T.C, Bresler M.S. On the nature of the energy gap of dodecaborate YbB12. Physics of the solid state, 2002, 44 (8), P. 1465 (in Russian).

73. Tsidil’kovskii I.M. Gapless semiconductors – a new class of substances. Academy of Sciences of the USSR. Series: Academic reading, Nauka, Moscow, 1986 (in Russian).

74. Elesin V.F., Kapaev V.V., Kopaev Yu.V. Coexistence of ferromagnetism and nonuniform superconductivity. Phys. Usp., 2004, 47, P. 949– 953.

75. Little W.A. Possibility of Synthesizing an Organic Superconductor. Phys. Rev., 1964, 134, P. 416.

76. Little W.A. Superconductivity at Room Temperature. Scient. Amer., 1965, 212 (2), P. 21.

77. Little W. Superconductivity at room temperature. Uspekhi Fizicheskikh Nauk, 1965, 86 (2), P. 315–326 (in Russian).

78. Bednorz J.G, Muller K.A. Possible highT superconductivity in the Ba–La–Cu–O system. Z. Phys. B: Cond. Mat., 1986, 64 (2), P. 189–193.

79. Tretyakov Yu.D. Chemical superconductors before the Third Millennium. URL: www.chem.msu.su/rus/journals/xr/tretyak.html.

80. Wu M.K., Ashburn J.R., et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett., 1987, 58, P. 908.

81. Maeda H., Tanaka Y., et al. New high-T c superconductors without rare earth element. Physica C, 1988, 153 (602), P. 7.

82. Matsui Y. Maeda H., Tanaka Y., Horiuchi S. High-resolution electron microscopy of modulated structure in the new high-T c superconductors of the Bi-Sr-Ca-Cu-O system. Jpn. J. Appl. Phys., 1988, 2 (27), P. 36l.

83. Sheng Z.Z., Hermann A.M. Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system. Nature, 1988, 332, P. 138–139.

84. Torardi C.C., Subramanian M. A., et al. Crystal Structure of Tl2Ba2Ca2Cu3O10, a 125 K Superconductor. Science, 1988, 240 (4852), P. 631–634.

85. Putilin S.N., Antipov E.V., Chmaissem O., Marezig M. Superconductivity at 94 K in HgBa2Cu04+δ. Nature, 1993, 362, P. 226–228.

86. Abakumov A.M., Antipov E.V., et al. Complex oxides with coherent intergrowth structures. Russian Chemical Reviews, 1995, 64 (8), P. 719.

87. Campbell A.M., Evetts J.E. Critical currents in superconductors. Taylor and Francis Ltd, London, 1972.

88. Tretyakov Y.D., Gudilin E.A. Chemical design of metal-oxide superconductors. Physica B: Condensed Matter, 2002, 321 (1–4), P. 249– 256.

89. Tretyakov Y.D., Gudilin E.A., Reddy E.S., Schmitz G.J. Modern preparation metods of oriented thick films of superconducting cuprates. Crystallography Reports, 2004, 49 (2), P. 233–239.

90. Reddy E.S., Tarka M., Gudilin E.A., Schmitz G.J. A novel process for textured thick film YBa2Cu3Oy coated conductors based on constitutional gradients principle. Superconductor Science and Technology, 2005, 16 (6), P. 859–873.

91. Martynova I., Tsymbarenko D., et al. Solution deposition of ultrasmooth alumina on long-length metallic substrate for 2G superconducting tapes. Materials Research Bulletin, 2016, 78, P. 64–71.

92. Liu Zi-Kui, Zhong Yu, Schlom D.G. Computational Thermodynamic Modeling of the Mg-B System. Calpha, 2001, 25 (2), P. 299–303.

93. Grosche F.M., Yuan H.Q., et al. Superconductivity in the Filled Cage Compounds Ba6Ge25 and Ba4Na2Ge25. Phys. Rev. Lett., 2001, 87, P. 107.

94. Reich S., Tsabba Y. Possible nucleation of a 2D superconducting phase on WO3 single crystals surface doped with Na+. Eur. Phys. J. B, 1999, 9 (1), P. 1–4.

95. Levi Y., Millo O., et al. Evidence for localized high-Tc superconducting regions on the surface of Na-doped WO3. Europhys. Lett., 2000, 51 (5), P. 564–570.

96. Aliev A.E. High-Tc superconductivity in nanostructured NaxW03−y: sol-gel route. Supercond. Sci. Technol., 2008, 21, P. 1–9.

97. Kamihara Y., Watanabe T., Hirano M., Hosono H. Iron-Based Layered Superconductor La [O1−xFx] FeAs (x = 0.05 − 0.12) with T c = 26 K. Journal of the American Chemical Society, 2008, 130 (11), P. 3296–3297.

98. Takahashi H., Igawa K., et al. Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs. Nature, 2008, 453 (7193), P. 376–378.

99. Ren Z.A., Lu W., et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx]FeAs. Chin. Phys.Lett., 2008, 25, P. 2215.

100. Ren Z.A., Yang J., et al. Superconductivity in the iron-based F-doped layered quaternary compound Nd[O1−xFx]FeAs. Europhys. Lett., 2008, 82 (5), P. 57002.

101. Wang C., Li L.J., et al. Thorium-doping-induced superconductivity up to 56 K in Gd1−xThxFeAsO. Europhys. Lett., 2008, 83 (6), P. 67006.

102. Zhao J., Huang Q., Clarina de la Cruz, et al. Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to hightemperature superconductivity. Nature Materials, 2008, 7, P. 953–959.

103. Mazin I.I., Singh D.J., Johannes M.D., Du M.H. Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1−xFx. Phys. Rev. Lett., 2008, 101, P. 057003.

104. Wu M.K., Hsu F.C., et al. The development of the superconducting PbO-type β-FeSe and related compounds. Physica C, 2009, 469 (9–12), P. 340–349.

105. Guo J., Jin S., et al. Superconductivity in the iron selenide KxFe2Se2 (0 < x < 1.0). Phys. Rev. B, 2010, 82, P. 180520(1–4).

106. Martinelli A., Palenzona M., et al. From antiferromagnetism to superconductivity in Fe1+yTe1−xSex (0 ≤ x ≤ 0.20): Neutron powder diffraction analysis A. Martinelli. Phys. Rev. B, 2010, 81, P. 094115(1–10).

107. Roslova M.V., Lebedev O.I., et al. Diversity of microstructural phenomena in superconducting and nonsuperconducting RbxFe2−ySe2: a transmission electron microscopy study at the atomic scale. Inorg. Chem., 2013, 52, P. 14419–14427.

108. Grinenko V.V., Efremov D.V., et al. Superconducting specific heat jump ∆C(T c) for K1−xNaxFe2As2. Physical Review B, 2014, 89, P. 060504(R).

109. Blinkin A.A., Derevyanko V.V., et al. Evolution of structure and properties of MgB2 superconductor during isothermal annealing. Physics of the solid state, 2005, 47 (9), P. 1546–1551 (in Russian).

110. Ivanovskii A.L. New superconductors based on five-component transition metal oxypnictides . Uspekhi Khimii, 2010, 79 (1), P. 3–14 (in Russian).

111. Kopaev Yu.V., Belyavskii V.I., Kapaev V.V. With cuprate luggage to room-temperature superconductivity. Phys. Usp., 2008, 51, P. 191– 198.

112. Chen X.K., Konstantinovic M.J., et al. Evidence for Two Superconducting Gaps. ´ Phys. Rev. Lett., 2001, 87, P. 157002.

113. Korotkov N.Y., Frolov K.V., et al. Mossbauer Study of a New Superconductor GdOFeAs. ¨ Journal of Superconductivity and Novel Magnetism, 2013, 26 (9), P. 2877-?2879.

114. Moskalenko V.A. Superconductivity of metals taking into account the overlap of the energy bands. Fizika Metals, 1959, 8 (4), P. 503 (in Russian).

115. Suhl H., Matthias B.T., Walker L.R. Bardeen – Cooper – Schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett., 1959, 3, P. 552.

116. Kuzmicheva T.E., Kuzmichev S.A., et al. Experimental study of intrinsic multiple Andreev reflections effect in GdO(F)FeAs superconductor array junctions. European Physics Letters, 2013, 102, P. 67006.

117. Lee W.S., Vishik I.M., et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature, 2007, 450 (7166), P. 81.

118. Mazin I.I., Schmalian J. Pairing Symmetry and Pairing State in Ferropnictides: Theoretical Overview. Physica C, 2009, 469, P. 614–627.

119. Kuroki K., Onari S., et al. Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting LaFeAsO1−xFx. Phys. Rev. Lett., 2008, 101, P. 087004.

120. Kontani H., Onari S. Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model. Phys. Rev. Lett., 2010, 104, P. 157001.

121. Shi-Zeng Lin, Xiao Hu. Vortex States and Phase Diagram of Multi-component Superconductors with Competing Repulsive and Attractive Vortex Interactions. Phys. Rev. B, 2011, 84, P. 214505.

122. Izyumov Yu.A., Proshin Yu.N., Khusainov M.G. Competition between superconductivity and magnetism in heterostructures of the ferromagnet-superconductor. Successes of physical barriers. Sciences, 2001, 172 (2), P. 113–154.

123. Wurmeh S., Lebedev O., et al. New Layered Intermetallic Iron-based Superconductors and Related Compounds: Controlling Physical Properties by Using Iso- and Heterovalent Substitutions . Journal RFBR, 2014, 81 (1), P. 64–76 (in Russian).

124. Kubaschewski O. Iron – Binary Phase Diagrams. Springer-Verlag, Berlin, 1982, 185 p.

125. Volkov M.P., Melekh B.A.-T., Bakharev V.I., Kartenko N.F. Obtaining poly- and single crystals of superconducting iron monochalcogenides for short times of synthesis. Technical physics Letters, 2010, 36 (6), P. 8–14 (in Russian).

126. Viewpoint: The iron age of superconductivity. URL: http://physics.aps.org/articles/v1/28.

127. Chakravarty S., Sudbo A., Anderson P.W., Strong S. Interlayer Tunneling and Gap Anisotropy in High-Temperature Superconductors. Science, 1993, 261, P. 337

128. Sadovskii M.V. High-temperature superconductivity in layered iron compounds. Uspekhi Fizicheskikh Nauk, 2008, 178 (12), P. 1243– 1271.

129. Leggett A.J. Cuprate Superconductivity: Dependence of Tc on the c-Axis Layering Structure. Physical Review Letters, 1999, 83 (2), P. 392 (in Russian).

130. Moler K.A., Kirtley J.R., et al. Images of interlayer Josephson vortices in Tl2Ba2Co6+d. Science, 1998, 279, P. 1193–1196.

131. Kotegawa H., Tokunaga Y., et al. Unusual magnetic and superconducting characteristics in multilayered high-Tc cuprates: 63Cu NMR study. Phys. Rev. B, 2001, 64, P. 064515.

132. Kuzemska I.G., Kuzemsky A.L., Cheglokov A.A. Superconducting Properties of the Family of Mercurocuprates and Role of Layered Structure. Journal of Low Temperature Physics, 2000, 118 (3–4), P. 147–152.

133. Ginzburg V.L. Once again about high-temperature superconductivity. Contemporary Physics, 1992, 33, P. 15–23.

134. Drozdov A.P., Eremets M.I., et al. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature, 2015, 525, P. 73–76.

135. Troyan I., Gavriliuk A., et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering. Science, 2016, 351 (6279), P. 1303–1306.

136. Prins J.F. Ion implantation of diamond for electronic applications. Semiconductor Science and Technology, 2003, 8 (3), P. 131.

137. Scheike T., Bohlmann W., Esquinazi P. et al. Can Doping Graphite Trigger Room Temperature Superconductivity? Evidence for Granular ¨ High-Temperature Superconductivity in Water-Treated Graphite Powder. Advanced Materials, 2012, 24 (43), P. 5826–5831.

138. Kawashima Y. Possible room temperature superconductivity in conductors. AIP Advanced, 2013, 3 (5), P. 052132.

139. Tripodi P., Gioacchino D. Di, Borelli R., Vinko J.D. Possibility of high temperature superconducting phases in PdH. Physica C, 2003, 388–389, P. 571–591.

140. He R.H., Karapetyan H., et al. From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions. Science, 2011, 331 (6024), P. 1579–1583.

141. Damascelli A. Probing the Electronic Structure of Complex Systems by ARPES. Physica Scripta, 2004, 109, P. 61–74.

142. Stolow A., Bragg A.E., Neumark D.M. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev., 2004, 104, P. 1719.

143. Boyarsky L.A. Pseudogap effects in strongly correlated electron systems. Low temperature Physics, 2006, 32 (8–9), P. 1078–1084.

144. Boyarsky L.A. Pseudogap phenomena in superconductors. The gap and the pseudogap in systems with waves of spin/charge-density. The General approach and the applicability of the two-fluid model. Physics of the solid state, semiconductors, nanostructures. Vestnik NSU. Series Physics, 2007, 2, P. 145–151.

145. Batlogg B., Varma C. The underdoped phase of cuprate superconductors. Phys. World, 2000, 13 (2), P. 33.

146. Loktev V.M., Quick R.M., Sharapov S.G. Phase actuations and pseudogap phenomena. Not coherent and ‘unbalanced’ Cooper pairs in HTSC. Phys. Rep., 2001, 349 (1), P. 1–123.

147. Mathur N.D., Grosche F.M., Julian S.R., et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature, 1998, 394, P. 39.

148. Izyumov Yu.A. Spin-fluctuation mechanism of high-Tc superconductivity and order-parameter symmetry. Phys. Usp., 1999, 42, P. 215– 243.

149. Kaul S.N., Kumar S., Rodriges Fernandez J. et al. Unconventional superconductivity in LaAg1–xMnx: Relevance of spin-fluctuationmediated pairing. Europhys. Lett., 2006, 74 (1), P. 138.

150. Krasnov V.M., Kovalev A.E., Yurgens A., Winkler D. Magnetic field dependence of the superconducting gap and the pseudogap in Bi2212 and HgBr2-Bi2212, studied by intrinsic tunnelling spectroscopy. Phys. Rev. Lett., 2001, 86, P. 2657–2660.

151. Boyer M.C., Wise W.D., et al. Imaging the two gaps of the high-temperature superconductor Bi2Sr2CuO6+x. Nature Physics, 2007, 3 (11), P. 802–806.

152. Belyavskii V.I., Kopaev Yu.V. Superconductivity of repulsive particles. Phys. Usp., 2006, 49, P. 441–467.

153. Aslamazov L.G., Larkin A.I. The Influence of fluctuations on the properties of overproud-nick at temperatures above the critical. Physics of the solid, 1968, 10 (4), P. 1104–1111 (in Russian).

154. Aslamasov L.G., Larkin A.I. The influence of fluctuation pairing of electrons on the conductivity of normal metal. Phys. Lett. A, 1968, 26, P. 238–239.

155. Maki K. The Critical Fluctuation of the Order Parameter in Type-II Superconductors. Prog. Theor. Phys., 1968, 39 (4), P. 897–906.

156. Da Silva Neto E.H., Comin R., et al. Charge ordering in the electron-doped superconductor Nd2−xCexCuO4. Science, 2015, 347 (6219), P. 282–285.

157. Mizen K.V., Ivanenko O.M. Phase diagram of La2−xMxCuO4 as a key to understanding the nature of high temperature superconductors. Uspekhi Fizicheskikh Nauk, 2004, 174 (5), P. 545–563 (in Russian).

158. Chakravarty S., Kee H.-Y., Vlker K. An explanation for a universality of transition temperatures in families of copper oxide superconductors. Nature, 2004, 428 (6978), P. 53–55.

159. Aleskovskij V.B. Chemistry and technology of solid substances. J. Appl. Chem. USSR, 1974, 47, P. 2145 (in Russian).

160. Aleskovski V.B. Chemical Assembly materials. Vestnik Akad. Of Sciences of the USSR, 1975, P. 48–51 (in Russian).

161. Malygin A.A., Drozd V.E., Malkov A.A., Smirnov V.M. From V.B. Aleskovskii‘s ‘Framework’ Hypothesis to the Method of Molecular Layering/ Atomic Layer Deposition. Chemical Vapor Deposition, 2015, 21, P. 216–240.

162. Second-Generation HTS Conductors. Ed. by Goyal A. New York: Inc. Springer-Verlag, 2004.

163. Tolstoy V.P. Synthesis of thin-layer structures by the ionic layer deposition method. Uspekhi Khimii, 1993, 62 (3), P. 237–242 (In Russian).

164. Kuz’menko V.M., Lazarev G.G., Mel’nikov V.I., Sudovcov A.I. Critical parameters of the amorphous metal film (a Review). Ukrainian physical journal, 1976, 21 (6), P. 883–903.

165. Eletskii A.V., Smirnov B.M. Fullerenes and carbon structures. Phys. Usp., 1995, 38, P. 935–964 (in Russian).

166. Galikeev A.R. New forms of polymeric hydrocarbon. Ufa: Ufa. State oil. Tech. Univ., 2001.

167. Yang H.B., Rameau J.D., Johnson P.D., at al. Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+delta. Nature, 2008, 456, P. 77–80.

168. Shabanova N.P., Krasnoslobodtsev S.I., Varlashkin A.V., Golovashkin A.I. Parallel critical magnetic field of thin films NbC and MgB2. Scientific session Moscow engineering physics Institute, 2006, 4.

169. Bagraev N.T., Klyachkin L.E., et al. Superconducting properties for silicon nanostructures. Semiconductor physics and technology, 2009, 43 (11), P. 1481–1495 (in Russian).

170. Prikhod’ko A.V., Kozyrev S.V. Superconductivity in quantum-well nanostructures. Scientific and technical sheets SPbSPU, 2007, 4, P. 221–226 (in Russian).

171. Shapoval E.A. Critical Fields of Thin Superconducting Films. JETP, 1966, 22 (3), P. 647–653 (in Russian).

172. Pearl J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett., 1964, 5, P. 65.

173. Samus A.N., Popkov A.F., et al. Resistive State and dynamics of vortices in superconducting films. Superconductivity: physics, chemistry, technology, 1991, 4 (7), P. 1324 (in Russian).

174. Lomtev A.I. Contrails live an isolated vortex pearl in a thin film magnetic superconductor. JETP Letters, 2000, 71 (10), P. 618 (in Russian).

175. Lomtev A.I. Inversion satellites” secluded oscillating vortex pearl in a thin film magnetic superconductor. Physics of the solid state, 2001, 43 (11), P. 1945–1951 (in Russian).

176. Umezawa H., Matsumoto H., Tachiki M. Thermo Field Dynamics and Condensed States. Amsterdam (Netherlands): North-Holland Publishing Company, 1982.

177. Grishin A.M., Martynovich A.Y., Yampolsky S.V. Inversion of the magnetic field and the chain of vortices in anisotropic superconductors. JETP, 1990, 97 (6), P. 1930–1946 (in Russian).

178. Buzdin A.I., Simonov A.Yu. Magnetic flux Penetration in layered superconductors. JETP, 1990, 98 (6), P. 2074–2085 (in Russian).

179. Kaul S.N., Kumar S., Rodriges Fernandez J. et al. Unconventional superconductivity in LaAg1−xMnx: Relevance of spin-fluctuationmediated pairing. Europhys. Lett., 2006, 74 (1), P. 138.

180. Ipatova I.P., Shchukin V.A., et al. Formation of strained superlattices with a macroscopic period via spinodal decomposition of III–V semiconductor alloys. Sol. St. Commun., 1991, 78 (19), P. 19–24.

181. Bagraev N.T., Gehlhoff W., et al. Quantum-Well Boron and Phosphorus Diffusion Profiles in Silicon. Def. Dif. Forum, 1997, 143–147, P. 1003.

182. Malygin A.A. Nanotechnology molecular layering: principles and applications (a review). Nanotechnologies in Russia, 2007, 2 (3–4), P. 87 (in Russian).

183. Mazel E.Z., Press F.P. Planar silicon technology devices. Moscow, Energy, 1974 (in Russian).

184. VLSI Technology: Fundamentals and Applications Editors. Ed. by Yasuo Tarui. Springer Series in Electronics and Photonics, 12, Springer-Verlag, 1986.

185. Jaeger R.C. Film Deposition – Introduction to Microelectronic Fabrication (2nd). UpPer Saddle River: Prentice Hall, 2002

186. Poindexter E.H., Caplan P.H., Deal B.E., Gerardy G.J. The Physics and Chemistry of SiO2 and Si–SiO2 Interfaces. Plenum Press, New York, 1988.

187. Bagraev N., Bouravleuv A., et al. Self-assembled impurity superlattices and microcavities in silicon. Def. Dif. Forum, 2001, 194, P. 673.

188. Feder J. Fractals. Plenum Press, New York, 1988.

189. Tsebro V.I., Omeljnovskij O.E., Moravian A.P. Undamped currents and capture the magnetic flux in the fragments of the carbon deposits containing multilayer nanotubes. JETP Letters, 1999, 70 (7), P. 457–462 (in Russian).

190. Khusainov M.G. Nonuform superconducting states and umklapp processes in ferromagnet-superconductor nanostructuctures. E. J. Magnetic Resonance in Solid, 2004, 6 (1), P. 104–118.

191. Morozov Y.G., Belousova O.V., et al. Electric field-assisted levitation-jet aerosol synthesis of Ni/NiO nanoparticles. Journal of Materials Chemistry, 2012, 22 (22), P. 11214–11223.

192. Kuznetsov M.V., Morozov Y.G., Belousova O.V. Levitation jet synthesis of nickel ferrite nanoparticles. Inorganic Materials, 2012, 48 (10), P. 1044–1051.

193. Morozov Y.G., Ortega D., et al. Some peculiarities in the magnetic behavior of aerosol generated NiO nanoparticles. Journal of Alloys and Compounds, 2013, 572, P. 150–157.

194. Shishkovsky I., Morozov Y. Electrical and magnetic properties of multilayer polymer structures with nano inclusions as prepared by selective laser sintering. Journal of Nanoscience and Nanotechnology, 2013, 13 (2), P. 1440–1443.

195. Gusarov V.V., Malkov A.A., Ishutina Zh., Malygin A.A. Phase formation in a nanosize silicon oxide film on surface of aluminum oxide. Tech. Phys. Lett., 1998, 24 (1), P. 3–8 (in Russian).

196. Smirnov A.V., Fedorov B.A., et al. Core-shell nanoparticles forming in the ZrO2–Gd2O3–H2O system under hydrothermal condition. Doklady Physical Chemistry, 2014, 456 (1), P. 171–173 (in Russian).

197. Almjasheva O.V., Smirnov A.V., et al. Structural features of ZrO2–Y2O3 and Gd2O3 nanoparticles forming under hydrothermal condition. Russian Journal of General Chemistry, 2014, 84 (5), P. 710–716 (in Russian).

198. Tomkovich M.V., Andrievskaya E.R., Gusarov V.V. Formation under hydrothermal condition of nanoparticles based on system ZrO2– Gd2O3. Nanosystems: Physics, Chemistry, Mathematics, 2011, 2 (2), P. 6–14 (in Russian).

199. Gusarov V.V., Almjasheva O.V. The role or status of substances in the formation of structure and properties of materials. Chapter 13 in the book Nanomaterials: properties and applications. Ed. by Yaroslavtsev A.B. Scientific world, Moscow, 2014 (in Russian).

200. Defay R. Etude Thermodynamique de la Tension Superficielle. Paris, Gauthier-Villars and Cie, 1934, 372 p.

201. Defay R., Prigogine I. Tension superficielle et adsorption. Liege, Ed. Desoer, 1951, 295 p.

202. Gusarov V.V., Suvorov A.S. Self-accelerating processes of development of solid-phase systems (synthesis and function). In book Future directions of chemistry and chemical technology. Ed. S. Dudyrev. Chemistry, Leningrad, 1991, P. 153–158 (in Russian).

203. Gusarov V.V., Ishutin J.N., Malkov A.A., Malygin A.A. Peculiarities of solid-phase chemical reaction of mullite formation in nanoscale film composition,. Dokl. Academy of Sciences, 1997, 357 (2), P. 203–205 (in Russian).

204. Tauson, V.L., Loginov B.A., Akimov V.V., Lipko V.S. Sticky Nonautonomous phases as potential sources of incoherent elements. Dokl. Academy of Sciences, 2006, 406 (6), P. 806 (in Russian).

205. Neiman A.Ya., Uvarov N.F., Pestereva N.N.. Solid state surface and interface spreading: An experimental study. Solid State Ionics, 2007, 177 (39–40), P. 3361.

206. Rusanov A.I. Phase equilibria and surface phenomena. Chemistry, Leningrad, 1967, 388 p. (in Russian).

207. Pervov V.S., Mikheikin I.D., Makhonina E.V., Buckiy V.D. Supramolecular assemblies in eutectic alloys. Uspekhi Khimii (Progress in chemistry), 2003, 72 (9), P. 852 (in Russian).

208. Neumann A.J., Tsipis E.V., et al. Surface. X-ray, synchrotron and neutron studies, 2001, 10, P. 68 (in Russian).

209. Kafarov V.V., Meshalkin V.P. Analysis and synthesis of chemical-technological systems. Chemistry, Moscow, 1991, 432 p. (in Russian).

210. Cohen M.H., Douglass D.H. Superconductive Pairing Across Electron Barriers. Phys. Rev. Lett., 1967, 19, P. 118.

211. Keldysh L.V. Superconductivity in nonmetallic systems. Sov. Phys. Usp., 1965, P. 496–500 (in Russian).

212. Morozov Y.G., Petinov V.I. Superconductivity in the ensembles of small metallic particles. Solid State Communs., 1981, 40, P. 991.

213. Geppert-Mayer M., Jensen J.H.D. Elementary Theory of Nuclear Shell Structure. John Wiley u. Sons, Inc., New York; Chapman and Hall, Ltd., London, 1955.

214. Goeppert Mayer M. Nuclear Shell Structure. Modern Physics for the Engineer, McGraw Hill, 1961.

215. Goeppert Mayer M. Nuclear Shell Structure. Uspekhi Fizicheskikh Nauk, 1964, 82 (4), P. 749–768 (in Russian).

216. Trunev A.P. The structure of atomic nuclei and binding energy in the shell model. J. Chaos and Correlation, 2012, 1, P. 1–19.

217. Friedel J. BCS superconductivity for weakly coupled clusters. Journal de Physique II, EDP Sciences, 1992, 2 (4), P. 959–970.

218. Kresin V.Z., Ovchinnikov Yu.N. ‘Giant’ strengthening of superconducting pairing in metallic nanoclusters: strong increase in the transition temperature and the possibility of superconductivity at room temperature. Uspekhi Fizicheskikh Nauk, 2008, 78 (5), P. 449 (in Russian).

219. Perenboom J., Wyder P., Meier F. Electronic-properties of small metallic particles. Phys. Rep., 1981, 78, P. 173–292.

220. Anderson P.W. Theory of dirty superconductors. Journal of Physics and Chemistry of Solids, 1959, 11 (26), P. 26–30.

221. Abeles B. Applied Solid State Science. In Advances in Material and Device Research, ed. by R. Wolfe. Academic Press, New York, 1976, 6, P. 1.

222. Dynes R.C., Garno J.P., Rowell J.M. Electrical Conductivity in Quench-Condensed Metal Films. Phys. Rev. Lett., 1978, 40, P. 479.

223. Deutscher G. New Superconductors: From Granular to High Tc. World Scientific, Singapore, 2006, 244 p.

224. Parmenter, R. Size Effect in a Granular Superconductor. Phys. Rev., 1968, 166, P. 392.

225. Knight W. In Novel Superconductivity, Ed. by S.A. Wolf, V.Z. Kresin. New York: Plenum Press, 1987.

226. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultradispersed zirconium dioxide as influenced by conditions of hydrothermal synthesis. Russian Journal of General Chemistry, 1999, 69 (8), P. 1219–1222.

227. Almyasheva O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russian Journal of General Chemistry, 2010, 80 (3), P. 385–390.

228. Uvarov N.f., Boldyrev V.V. Dimensional effects in chemistry of heterogeneous systems. Progress of chemistry, 2001, 70 (4), P. 307–329.

229. Mastai Y., Gedanken A. In The Chemistry of Nanomaterials: Synthesis, Properties and Applications, Ed. by Rao C.N.R., Muller A., Cheetham A.K. Weinheim: Wiley-VCH, 2004, 1, P. 113.

230. Gusarov V.V. The thermal effect of melting in polycrystalline systems. Thermochim. Acta, 1995, 256 (2), P. 467–472.

231. Kovalenko A.N., Kalinin N.V. Thermodynamic instability of Compound and for-mation of nanosized parti-cles nearby the critical point of phase generating media. Nanosystems: physics, chemistry, mathematics, 2014, 5 (2), P. 258–293.

232. Bulgakov A.V., Bulgakova N.M. Burakov I.M., etc. The Synthesis of nanoscale materials under the influence of powerful streams of energy on matter. Institute of Thermophysics SB RAS, Novosibirsk, 2009.

233. Kotov Yu.A., Bagazeev A.V., Beketov I.V. etc. Characteristics of nickel oxide nanopowder obtained an electric explosion delay. Technical physics letters, 2005, 75 (10), P. 39–43 (in Russian).

234. Sedoy V.S., Valevich V.V., Gerasimova N.N. Synthesis of highly dispersed powders method of electric explosion in Gaza with a pressure. Physics and chemistry of materials processing FHOM, 1999, 4, P. 92–95 (in Russian).

235. Tretyakov Yu.D. Self-organisation processes in the material chemistry. Uspekhi Khimii (Russian Chemical Reviews), 2003, 72 (8), P. 731–763.

236. Goldschmidt V.M. Die Gesetze der Krystallochemie. Die Naturwissenschaften, 1926, 21, P. 477–485.

237. Urusov V.S., Eremin N.N. Crystal chemistry. Publishing house of Moscow University, Moscow, 2005 (in Russian).

238. Tugova E.A. A comparative analysis of the formation processes of Ruddlesden-Popper phases in the La2O3–SrO–M2O3 (M = Al, Fe) systems. Glass Physics and Chemistry, 2009, 35 (4), P. 416–422.

239. Tugova E.A., Gusarov V.V. Influence of structural mismatch of the layers forming the phase Ruddlesden-Popper LnnMFenO3n+1 on their resistance. Proceedings of VIII International conference ‘Amorphous and microcrystalline semiconductors’. St. Petersburg, 2012, p. 329–330.

240. Goodilin E.A., Oleynikov N.N., et al. On the stability region and structure of the Nd1+xBa2−xCu3Oz solid solution. Physica C, 1996, 272 (182), P. 65–78.

241. Andrievskii R.A. Thermal stability of nanomaterials. Uspekhi khimii (Russian Chemical Reviews), 2002, 10 (71), P. 853–866.

242. Andrievskii R.A. Thermal stability of consolidate metallic nanomaterials. Uspekhi khimii (Russian Chemical Reviews), 2014, 4, P. 365– 375.

243. Mints R.G., Rakhmanov L.L. Magnetic instabilities in hard superconductors. Uspekhi Fizicheskikh Nauk, 1977, 121 (3), P. 499–524 (in Russian).

244. Romanovskii V.R. Macroscopic flux-creep electrodynamics of high temperature superconductor. In book Studies of high temperature superconductors. Advances in research and applications. Nova Science Publishers, New York, 2005.

245. Romanovskii V.R. Thermal mechanisms of the formation, destruction, and degradation of critical current states of high-temperature superconductors. Doklady Physics, 2009, 54 (4), P. 196.

246. Romanovskii V.R. Magnetic, overcurrent and thermal instabilities in superconductors (review results of existing stability theory). Vestnik Bauman Moscow State Technical University, Ser. ‘Engineering’, 2012, P. 17–32 (in Russian).

247. Altshuler E., Johansen T.H. Colloquium: Experiments in vortex avalanches. Rev. Mod. Phys., 2004, 76, P. 471.

248. Schuster H.G. Deterministic Chaos – An Introduction Physik. Verlag, Weinheim, 1984.

249. Snarsky A.A., Palicky E.A., Palti A.M., Morozovskii A.E. Percolation mechanism of depinning vortices in the resistive state of thin films of superconductors of the second kind. JETP Letters, 1995, 61 (2), P. 112–116 (in Russian).

250. Shklovsky B.I., Efros A.L. Percolation Theory and conductivity of strongly inhomogeneous media. Uspekhi Fizicheskikh Nauk, 1975, 117 (3), P. 401–433 (in Russian).

251. Solovjev V.A., Pan V.M., Freyhard H.C. Anisotropic flux dynamics in single-crystalline and melt-textured YBa2Cu3O7?δ. Phys. Rev. B, 1994, 50 (18), P. 13724-?13734.

252. Kovalenko A.N. Regulation and thermodynamic stability of nonequilibrium processes of rapid transformation of energy. Proceedings of CKTI (I.I.Polzunov Joint Stock Company CKTI), 1996, 281 (2), P. 53–62 (in Russian).

253. Arkharov A.M., Lavrov N.A., Romanovskii V.R. Features conditions electrodynamic stabilization of composites based on hightemperature superconductors with different types of nonlinearity in their current-voltage characteristics. Journal of technical physics, 2014, 84 (6), P. 77–85 (in Russian).

254. URL: https://www.nobelprize.org/nobe_prizes/physics/laureates/2016/press.html.

255. Hadzibabic Z., Kruger P., et al. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature, 2006, 441, P. 1118.

256. Berezinskii V.L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Sov. Phys. JETP, 1971, 32 (3), P. 493–500.

257. Kosterlitz J.M., Thouless D.J. Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C: Solid State Physics, 1973, 6, P. 1181–11203.

258. Gibney E., Castelvecchi D. Physics of 2D exotic matter wins Nobel: British-born theorists recognized for work on topological phases. Nature. London: Springer Nature, 2016, 538 (7623), P. 18.

259. Haldane F.D.M. Quantum Hall effect without Landau levels: a condensed-matter realization of the parity anomaly. Phys. Rev. Lett., 1988, 61, P. 2015.

260. Haldane F.D.M. Geometrical Description of the Fractional Quantum Hall Effect. URL: https://arxiv.org/abs/1106.3375, 2011.


Review

For citations:


Kovalenko A.N. High-temperature superconductivity: From macro- to nanoscale structures. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(6):941-970. https://doi.org/10.17586/2220-8054-2016-7-6-941-970

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)