Parent and reduced graphene oxide of different origin in light of neutron scattering
https://doi.org/10.17586/2220-8054-2016-7-1-71-80
Abstract
The current paper presents results from an extended neutron scattering study of a three-part set of parent and reduced graphene oxides (GO and rGO, respectively) of different origins. The first part concerns the rGO of natural origin represented by shungite carbon, the second and third parts are related to synthetic GO/rGO pairs with the latter produced during either chemical treatment or via thermal exfoliation of the parent GO, respectively. The study involved both the neutron diffraction and inelastic neutron scattering. The one-phonon amplitude-weighted density of vibrational states G(ω) represents the inelastic incoherent neutron scattering spectra of the products. Common characteristics and individual distinctions of the studied species are discussed.
Keywords
About the Authors
E. F. ShekaRussian Federation
Moscow
I. Natkaniec
Poland
Poznan´
N. N. Rozhkova
Russian Federation
Petrozavodsk
E. Yu. Buslaeva
Russian Federation
Moscow
S. V. Tkachev
Russian Federation
Moscow
S. P. Gubin
Russian Federation
Moscow
V. P. Mel’nikov
Russian Federation
Moscow
References
1. Sheka E.F., Rozhkova N.N., Natkaniec K.I., Holderna-Natkaniec K. Neutron scattering study of reduced graphene oxide of natural origin. JETP Lett., 2014, 99, P. 650–655.
2. Sheka E.F., Rozhkova N.N., Holderna-Natkaniec K., Natkaniec I. Nanoscale reduced-graphene-oxide origin of shungite in light of neutron scattering. Nanosystems: Phys. Chem. Math., 2014, 5 (5), P. 659–676.
3. Natkaniec I., Sheka E.F., et al. Computationally supported neutron scattering study of parent and chemically reduced graphene oxide. J. Phys. Chem. C, 2015, 119 (32), P. 18650–18662.
4. Sheka E.F., Natkaniec I., Mel’nikov V.P., Druzbicki K. Nanosystems: Phys. Chem. Math., 2015, 6 (3), P. 378–393.
5. AkKoLab LLC, URL: www.akkolab.ru.
6. Tkachev S.V., Buslayeva E.Yu., et al. Reduced graphene oxide. Inorg. Mater., 2012, 48, P. 796–802.
7. Sheka E.F., Golubev E.A. About technical graphene – reduced oxide graphene- and shungite – its natural analogue. Zn. Tehn. Fiz., 2016, 86 (submitted).
8. Natkaniec I., Chudoba D., et al. Parameters of the NERA spectrometer for cold and thermal moderators of the IBR-2 pulsed reactor. J.Phys.: Conf. Series, 2014, 554, 012002.
9. Opalev S.V., Belenkov E.A. Experimental study of changing graphite structure under milling. (in Russ.) Izvestiya Chelyabinskogo Nauchnogo Centra, 2004, 3, P. 27–30.
10. Bokhenkov E.L., Natkaniec I., Sheka E.F. Determination of density of phonon states in a naphthalene crystal on basis of inelastic incoherent neutron scattering. Zh. Exp. Teor. Fiz., 1976, 70, P. 1027–1043.
11. Kolesnikov A.I., Bokhenkov E.L., Sheka E.F. Multiphonon coherent scattering of neutrons in a naphthalene crystal. JETP, 1984, 57, P. 1273–1278.
12. Johnson M.R., Parlinski K., Natkaniec I., Hudson S. Ab initio calculations and INS measurements of phonons and molecular vibrations in a model peptide compound – urea. Chem. Phys., 2003, 291, P. 53–60.
13. Buchsteiner A., Lerf A., Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B, 2006, 110, P. 22328–22338
14. Marshall W., Lovesey S.W. Theory of Thermal Neutron Scattering, Oxford, 1971.
15. Finney J.L. Water? What’s so special about it? Phil. Trans. R. Soc. Lond. B, 2004, 359, P. 1145–1165.
16. Crupi V., Majolino D., Migliardo P., Venuti V. Neutron scattering study and dynamic properties of hydrogen-bonded liquids in mesoscopic confinement. 1. The water case. J. Phys. Chem. B, 2002, 106, P. 10884–10894.
17. Kolesnikov A.I., Zanotti J.-M., Loong C.-K., Thiyagarajan P. Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett., 2004, 93, 035503.
18. Corsaro C., Crupi, V., et al. Inelastic neutron scattering study of water in hydrated lta-type zeolites. J. Phys. Chem. A, 2006, 110, P. 1190–1195.
19. Chen S.-H., Loong C.-K. Neutron scattering investigations of proton dynamics of water and hydroxyl species in confined geometries. Nucl. Eng. Techn., 2006, 38, P. 201–224.
20. . Bertrand C.E., Zhang Y., Chen S.-H. Deeply-cooled water under strong confinement: neutron scattering investigations and the liquid-liquid critical point hypothesis. Phys. Chem. Chem. Phys., 2013, 15, P. 721–745.
21. Rozhkova N.N., Emel’yanova G.I., et al. From stable aqueous dispersion of carbon nanoparticles to the clusters of metastable Shungite carbon. Glass Phys. Chem., 2011, 37, P. 613–618.
22. Avdeev M.V., Tropin T.V., et al. Pore structures in shungites as revealed by small-angle neutron scattering. Carbon, 2006, 44, P. 954–961.
23. Sheka E.F., Rozhkova N.N. Shungite as the natural pantry of nanoscale reduced graphene oxide. Int. J. Smart Nano Mater., 2014, 5, P. 1–16.
24. Hall P.G., Pidduck A., Wright C.J. Inelastic neutron scattering by water adsorbed on silica. J. Colloid. Interface Sci., 1981, 79, P. 339–349.
25. Sheka E.F., Khavryutchenko V.D., Markichev I.V. Techonological polymorphism of disperse amorphous silicas: inelastic neutron scattering and computer modelling. Russ. Chem. Rev., 1995, 64, P. 389–414.
26. Kuila T., Bose S., et al. Chemical functionalization of graphene and its applications. Progr. Mater. Sci., 2012, 57, P. 1061–1105.
27. Luo J., Kim J., Huang J. Material processing of chemically modified graphene: Some challenges and solutions. J. Acc. Chem. Res., 2013, 46, P. 2225–2234.
28. Chua C.K., Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev., 2014, 43, P. 291–312.
29. Zhao J., Liu L., Li F. Graphene Oxide: Physics and Applications. Springer, 2015.
30. Kumar P.V., Bardhan N.M., et al. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nature Chem., 2014, 6, P. 151–158.
31. Cavallari C., Pontiroli D., et al. Hydrogen on graphene investigated by inelastic neutron scattering. J. Phys. Conf. Series, 2014, 554, 012009.
32. Druzbicki K., Natkaniec I. Vibrational properties of water retained in graphene oxide. Chem. Phys. Lett., 2014, 600, P. 106–111.
33. Bousige C., Rols S., et al. Lattice dynamics of a rotor-stator molecular crystal: fullerene-cubane C60·C8H8. Phys. Rev. B, 2010, 82, 195413.
Review
For citations:
Sheka E.F., Natkaniec I., Rozhkova N.N., Buslaeva E.Yu., Tkachev S.V., Gubin S.P., Mel’nikov V.P. Parent and reduced graphene oxide of different origin in light of neutron scattering. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):71-80. https://doi.org/10.17586/2220-8054-2016-7-1-71-80