Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Phase composition and photoluminescence correlations in nanocrystalline ZrO2:Eu3+ phosphors synthesized under hydrothermal conditions

https://doi.org/10.17586/2220-8054-2018-9-3-378-388

Abstract

Luminescent zirconia nanoparticles with europium ion content 1 and 10 mol.% were synthesized under hydrothermal conditions. Annealing of ZrO2: 1 mol. Eu3+ nanoparticles made it possible to obtain a sample with a high monoclinic phase content up to 92 %. An increase in the concentration of Eu3+ ions introduced into the zirconia crystal lattice has made it possible to almost completely convert its monoclinic and tetragonal phases into cubic modification. The phase composition of the synthesized samples was determined by powder X-ray diffraction, electron microdiffraction, and Raman spectroscopy. Analysis of the crystallographic data and the luminescent spectra helped to reveal correlations between the ZrO2:Eu3+ nanophosphor structure and the energy redistribution of Eu3+ optical transitions at 614 – 626 nm and 606 –633 nm wavelengths. In addition, a relationship was established between the phase composition of nanoparticles based on zirconia and the luminescence lifetime of Eu3+ ions.

About the Authors

A. N. Bugrov
Institute of macromolecular compounds RAS; Saint Petersburg Electrotechnical University “LETI”
Russian Federation

Bolshoy pr. 31, 199004, St. Petersburg

ul. Professora Popova 5, 197376, St. Petersburg



R. Yu. Smyslov
Institute of macromolecular compounds RAS; Petersburg Nuclear Physics Institute, NRC KI
Russian Federation

Bolshoy pr. 31, 199004, St. Petersburg

Orlova roscha mcr. 1, 188300, Gatchina, Leningrad region



A. Yu. Zavialova
Saint Petersburg Electrotechnical University “LETI”; Saint Petersburg State Institute of Technology (Technical University)
Russian Federation

ul. Professora Popova 5, 197376, St. Petersburg

Moskovsky pr. 26, 190013, St. Petersburg



D. A. Kirilenko
Ioffe Institute RAS; ITMO University
Russian Federation

Politekhnicheskaya ul. 26, 194021, St. Petersburg

Kronverskii av. 49, 197101, St. Petersburg



D. V. Pankin
Research park SPbU
Russian Federation

Ulianovskaya 5, 198504, St. Petersburg



References

1. Eichler J., Eisele U., Rodel J. Mechanical properties of monoclinic zirconia. J. Am. Ceram. Soc., 2004, 87 (7), P. 1401–1403.

2. Aktasa B., Tekelib S., Salman S. Improvements in microstructural and mechanical properties of ZrO2 ceramics after addition of BaO. Ceramics International, 2016, 42, P. 3849–3854.

3. Borik M.A., Bublik V.T., Vilkova M.Yu., et al. Structure, phase composition and mechanical properties of ZrO2 partially stabilized with Y2O3. Modern Electronic Materials, 2015, 1 (1), P. 26–31.

4. Lyapunova E.A., Uvarov S.V., Grigoriev M.V., et al. Modification of the mechanical properties of zirconium dioxide ceramics by means of multiwalled carbon nanotubes. Nanosystems: physics, chemistry and mathematics, 2016, 7 (1), P. 198–203.

5. Ramachandra M., Abhishek A., Siddeshwar P., Bharathi V. Hardness and wear resistance of ZrO2 nanoparticle reinforced Al nanocomposites produced by powder metallurgy. Procedia Materials Science, 2015, 10, P. 212–219.

6. Grathwohl G., Liu T. Crack resistance and fatigue of transforming ceramics: II, CeOs-stabilized tetragonal ZrO2. J Am. Ceram. Soc., 1991, 74 (12), P. 3028–3034.

7. Hayashi H., Saitou T., Maruyama N., et al. Thermal expansion coefficient of yttria-stabilized zirconia for various yttria contents. Solid State Ionics, 2005, 176 (5–6), P. 613–619.

8. Leclercq B., Mevrel R., Liedtke V., Hohenauer. W. Thermal conductivity of zirconia-based ceramics for thermal barrier coating. Hohenauer Mat.-wiss. u. Werkstofftech, 2003, 34, P. 406–409.

9. Bugrov A.N., Rodionov I.A., Smyslov R.Yu., et al. Photocatalytic activity and luminescent properties of Y, Eu, Tb, Sm and Er-doped ZrO2 nanoparticles obtained by hydrothermal method. Int. J. Nanotechnology, 2016, 13 (1/2/3), P. 147–157.

10. Klimke J., Trunec M., Krell A. Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence. J. Am. Ceram. Soc., 2011, 94 (6), P.1850–1858.

11. Shojai F., Mantyla T.A. Chemical stability of yttria-doped zirconia membranes in acid and basic aqueous solutions: chemical properties, effect of annealing and aging time. Ceramics International, 2001, 27 (3), P. 299–307.

12. Reisfeld R., Zelner M., Patra A. Fluorescence study of zirconia films doped by Eu, Tb and Sm and their comparison with silica films. Journal of Alloys and Compounds, 2000, 300–301, P. 147–151.

13. Jerman M., Qiao Z., Mergel D. Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films mass density. Applied Optics, 2005, 44 (15), P. 3006–3012.

14. Soares M.R.N., Nico C., Peres M., et al. Structural and optical properties of europium doped zirconia single crystals fibers grown by laser floating zone. Journal pf Applied Physics, 2011, 109 (1), P. 013516.

15. Sinhamahapatra A., Jeon J.-P., Kang J., et al. Oxygen-deficient zirconia (ZrO2−x): A new material for solar light absorption. Sci. Rep., 2016, 6, P. 27218.

16. Chen X., Liu Y., Tu D. Lanthanide-doped luminescent nanomaterials: from fundamentals to bioapplications. Springer-Verlag Berlin Heidelberg, 2014, 208 p.

17. Stefanic G., Music S. Factors influencing the stability of low temperature tetragonal ZrO2. Croatica Chemica Acta, 2002, 75 (3), P. 727–767.

18. Vasilevskaya A., Almjasheva O.V., Gusarov V.V. Peculiarities of structural transformations in zirconia nanocrystals. Journal of Nanoparticle Research, 2016, 18 (188), 11 p.

19. Kurapova O.Yu., Konakov V.G. Phase evolution in zirconia-based systems. Rev. Adv. Mater. Sci., 2014, 36, P. 177–190.

20. Sahina O., Demirkola H., Gocmez M., et al. Mechanical properties of nanocrystalline tetragonal zirconia stabilized with CaO, MgO and Y2O3. Acta Physica Physica Polonica A, 2013, 123 (2), P. 296–298.

21. Romer V.H., Rosa E., Lopez-Luke T., et al. Brilliant blue, green and orange-red emission band on Tm3+-, Tb3+- and Eu3+-doped ZrO2 nanocrystals. Journal of Physics D: Applied Physics, 2010, 43, P. 465105.

22. Almjasheva O.V., Smirnov A.V., Fedorov B.A., et al. Structural features of ZrO2–Y2O3 and ZrO2–Gd2O3 nanoparticles formed under hydrothermal conditions. Russian Journal of General Chemistry, 2014, 84 (5), P. 804–809.

23. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., et al. Biological effect of zirconium dioxide-based nanoparticles. Nanosystems: physics, chemistry and mathematics, 2017, 8 (3), P. 391–396.

24. Fabris S. A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater., 2002, 50, P. 5171–5178.

25. Smits K., Grigorjeva L., Millers D., et al. Europium doped zirconia luminescence. Opt. Mater. (Amst), 2010, 32, P. 827–831.

26. Meetei S.D., Singh S.D. Hydrothermal synthesis and white light emission of cubic ZrO2:Eu3+ nanocrystals. Journal of Alloys and Compounds, 2014, 587, P. 143–147.

27. Smits K., Olsteins D., Zolotarjovs A., et al. Doped zirconia phase and luminescence dependence on the nature of charge compensation. Scientific Reports, 2017, 7, P. 444–453.

28. Tiseanu C., Cojocaru B., Parvulescu V.I., et al. Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence. Phys. Chem. Chem. Phys., 2012, 14, P. 12970–12981.

29. Liu Y., Tu D., Zhu H., Chen X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev., 2013, 42, P. 6924–6958.

30. Gupta S.K., Natarajan V. Synthesis, characterization and photoluminescence spectroscopy of lanthanide ion doped oxide materials. BARC Newsletter, 2015, P. 14–21.

31. Bugrov A.N., Zavialova A.Yu., Smyslov R.Yu., et al. Luminescence of Eu3+ ions in hybrid polymer-inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence, 2018, P. 1–13.

32. Mon A., Ram S. Enhanced phase stability and photoluminescence of Eu3+ modified t-ZrO2 nanoparticles. J. Am. Ceram. Soc., 2008, 91 (1), P. 329–332.

33. Vidya Y.S., Anantharaju K.S., Nagabhushana H., et al. Combustion synthesized tetragonal ZrO2:Eu3+ nanophosphors: Structural and photoluminescence studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, P. 241–251.

34. Ghosh P., Patra A. Role of surface coating in ZrO2/Eu3+ nanocrystals. Langmuir, 2006, 22, P. 6321–6327.

35. Ninjbadgar T., Garnweitner G., Borger A., et al. Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites. Adv. Funct. Mater., 2009, 19, P. 1819–1825.

36. Hobbs H., Briddon S., Lester E. The synthesis and fluorescent properties of nanoparticulate ZrO2 doped with Eu using continuous hydrothermal synthesis. Green Chem., 2009, 11, P. 484–491.

37. Lopato L.M., Andrievskaya E.R., Shevchenko A.V., Red’ko V.P. Phase relations in the ZrO2–Eu2O3 system. Russian Journal of Inorganic Chemistry, 1997, 42 (10), P. 1588–1591.

38. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morpholgy of ZrO2 nanoparticles. Nanosystems: physics, chemistry and mathematics, 2013, 4 (6), P. 810–815.

39. Bortolotti M., Lutterotti L., Lonardelli I. ReX: a computer program for structural analysis using powder diffraction data. J. Appl. Cryst., 2009, 42 (3), P. 538–539.

40. Vasilef I. QTIPLOT, Data Analysis and Scientific Visualisation. Universiteit Utrecht, Utrecht, Niederlande, 2011.

41. Smith D.K., Newkirk H.W. The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallographica, 1965, 18, P. 983–991.

42. Igawa N., Ishii Y. Crystal structure of metastable tetragonal zirconia up to 1473 K. J. Am. Ceram. Soc., 2001, 84 (5), P. 1169–1171.

43. Martin U., Boysen H., Frey F. Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. Acta Crystallographica Section B, 1993, 49 (3), P. 403–413.

44. Meetei S.D., Singh S.D., Singh N.S., et al. Crystal structure and photoluminescence correlations in white emitting nanocrystalline ZrO2:Eu3+ phosphor: Effect of doping and annealing. Journal of Luminescence, 2012, 132, P. 537–544.

45. Basahel S.N., Ali T.T., Mokhtar M., Narasimharao K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Research Letters, 2015, 10 (73), 13 p.

46. Adamski A., Jakubus P., Sojka Z. Synthesis of nanostructured tetragonal ZrO2 of enhanced thermal stability. Nukleunika, 2006, 51, P. 27–33.

47. Bersani D., Lottici P.P., Rangel G., et al. Micro-Raman study of indium doped zirconia obtained by sol-gel. J Non-Crystalline Solids, 2004, 345–346, P. 116–119.

48. Gazzoli D., Mattei G., Valigi M. Raman and X-ray investigations of the incorporation of Ca2+ and Cd2+ in the ZrO2 structure. J Raman Spectrosc., 2007, 38 (7), P. 824–831.

49. Kerbellec N., Catala L., Daiguebonne C., et al. Luminescent coordination nanoparticles. New J. Chem., 2008, 32, P. 584–587.

50. Lakowicz J. Principles of Fluorescence Spectroscopy, 3rd ed. Springer, New York, 2006.

51. Ishida H., Bunzli J.-C., Beeby A. Guidelines for measurement of luminescence spectra and quantum yields of inorganic and organometallic compounds in solution and solid state (IUPAC Technical Report). Pure Appl. Chem., 2016, 88 (7), P. 701–711.

52. Novikov E.G., Hoek A., Visser A., Hofstraat J.W. Linear algorithms for stretched exponential decay analysis. Optics Communications, 1999, 166, P. 189–198.

53. Klatt J., Gerich C., Grobe A., et al. Fractal dimension of time-resolved autofluorescence discriminates tumour from healthy tissues in the oral cavity. Journal of Cranio-Maxillo-Facial Surgery, 2014, 42 (6), P. 852-854.

54. Lianos P., Duportail G. Time-resolved fluorescence fractal analysis in lipid aggregates. Biophys. Chem., 1993, 48, P. 293–299.


Review

For citations:


Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kirilenko D.A., Pankin D.V. Phase composition and photoluminescence correlations in nanocrystalline ZrO2:Eu3+ phosphors synthesized under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(3):378-388. https://doi.org/10.17586/2220-8054-2018-9-3-378-388

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)