Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Study of glucose concentration influence on blood optical properties in THz frequency range

https://doi.org/10.17586/2220-8054-2018-9-3-389-400

Abstract

The optical properties of whole human blood with the different glucose level were studied by terahertz time-domain spectroscopy at frequencies ranging from 0.3 – 0.5 THz. The increasing of refractive index of blood at the glucose level growth was shown for series of experiments. The dispersion of complex refractive index of human nails was obtained. Based on these data, the non-invasive glucose measuring technique was proposed which utilizes the reflection of the THz pulse from nail plate/nail bed interface.

About the Authors

S. I. Gusev
Terahertz Biomedicine laboratory, ITMO University
Russian Federation

Kronverkskiy Ave, 49, St. Petersburg, 197101



P. S. Demchenko
Terahertz Biomedicine laboratory, ITMO University
Russian Federation

Kronverkskiy Ave, 49, St. Petersburg, 197101



E. A. Litvinov
Terahertz Biomedicine laboratory, ITMO University
Russian Federation

Kronverkskiy Ave, 49, St. Petersburg, 197101



O. P. Cherkasova
Biophysics laboratory, Institute of Laser Physics of SB RAS; Novosibirsk State Technical University
Russian Federation

Ac. Lavrentiev Ave, 13, Novosibirsk, 630090

K. Marksa Ave, 20, Novosibirsk, 630073



I. V. Meglinski
University of Oulu
Finland

P.O. Box 4500, FI-90015, Oulu



M. K. Khodzitsky
Terahertz Biomedicine laboratory, ITMO University
Russian Federation

Kronverkskiy Ave, 49, St. Petersburg, 197101



References

1. Shur M. Terahertz technology: devices and applications. Proceedings of ESSDERC, 2005, 35, P. 13–21.

2. Consolino, L., Bartalini S., and De Natale P. Terahertz Frequency Metrology for Spectroscopic Applications: a Review. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38 (11), P. 1289–1315.

3. Al-Naib, I.,Withawat W. Recent Progress in Terahertz Metasurfaces. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38 (9), P. 1067–1084.

4. Reid C. B., Reese G., Gibson A. P., Wallace V. P. Terahertz time-domain spectroscopy of human blood. IEEE Transactions on Terahertz Science and Technology, 2013, 3 (4), P. 363–367.

5. Yang X., Zhao X., Yang K., Liu Y., Liu Y., Fu W., Luo Y. Biomedical applications of terahertz spectroscopy and imaging. Trends in biotechnology, 2016, 34 (10), P. 810–824.

6. Thrane L., Jacobsen R. H., Jepsen P. U., Keiding S. THz reflection spectroscopy of liquid water. Chemical Physics Letters, 1995, 240 (4), P. 330–333.

7. Fitzgerald, A. J., Berry, E., Zinovev, N. N., Walker, G. C., Smith, M. A., Chamberlain, J. M. An introduction to medical imaging with coherent terahertz frequency radiation. Physics in Medicine & Biology, 2002, 47 (7), P. R67.

8. Wang, K., Da-Wen S., Hongbin P. Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry. Trends in Food Science & Technology, 2017, 67, P. 93–105.

9. Stratton I. M., Adler A. I., Neil H. A. W., Matthews D. R., Manley S. E., Cull C. A., Hadden D., Turner R. C., Holman R. R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. British Medical Journal,2000, 321 (7258), P. 405–412.

10. Zoungas S., Patel A., Chalmers J., de Galan B. E., Li Q., Billot L., Woodward M., Ninomiya T., Neal B., MacMahon S. et al. Severe hypoglycemia and risks of vascular events and death. New England Journal of Medicine, 2010, 363 (15), P. 1410–1418.

11. Su G., Mi S., Tao H., Li Z., Yang H., Zheng H., Zhou Y., Ma C. Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovascular Diabetology, 2011, 10 (1), P. 19.

12. Muggeo M., Verlato G., Bonora E., Zoppini G., Corbellini M., De Marco R. Long-term instability of fasting plasma glucose, a novel predictor of cardiovascular mortality in elderly patients with noninsulin-dependent diabetes mellitus: the verona diabetes study. Circulation, 1997, 96 (6), P. 1750–1754.

13. Krinsley J. S. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Critical Care Medicine, 2008, 36 (11), P. 3008–3013.

14. Wang X., Zhao X., Dorje T., Yan H., Qian J., Ge J. Glycemic variability predicts cardiovascular complications in acute myocardial infarction patients with type 2 diabetes mellitus. International Journal of Cardiology, 2014, 172 (2), P. 498–500.

15. Tierney M. J., Tamada J. A., Potts R. O., Jovanovic L., Garg S., Team C. R. et al. Clinical evaluation of the Glucowatch R Biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosensors and Bioelectronics, 2001, 16 (9-12), P. 621–629.

16. Larin K. V., Eledrisi M. S., Motamedi M., Esenaliev R. O. Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects. Diabetes Care, 2002, 25 (12), P. 2263–2267.

17. Cherkasova O. P., Nazarov M. M., Smirnova I. N., Angeluts A. A., Shkurinov A. P. Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes. Physics of Wave Phenomena, 2014, 22 (3), P. 185–188.

18. Segman Y. New method for computing optical hemodynamic blood pressure. Journal of Clinical and Experimental Cardiology, 2016, 7 (12), P. 1–7.

19. Chen, Hua, et al. Quantify Glucose Level in Freshly Diabetics Blood by Terahertz Time-Domain Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39 (4), P. 399–408.

20. Smith J. The Pursuit of Noninvasive Glucose: Hunting the Deceitful. Turkey, 5th Edition. 2017. URL: http://nivglucose.com/The%20Pursuit%20of%20Noninvasive%20Glucose%205th%20Edition.pdf.

21. Gusev S. I., Borovkova M. A., Strepitov M. A., Khodzitsky M. K. Blood optical properties at various glucose level values in THz frequency range. Proceedings of the SPIE-OSA, 2015, 9537, P. 95372.

22. Gusev S. I., Balbekin N. S., Sedykh E. A., Kononova Yu. A., Litvinenko E. V., Goryachuk A. A., Begaeva V. A., Goryachuk A. A., Babenko A. Yu., Khodzitsky M. K. Influence of creatinine and triglycerides concentrations on blood optical properties of diabetics in THz frequency range. Journal of Physics: Conference Series, 2016, 735 (1), P. 012088.

23. Guseva V. A., Gusev S. I., Demchenko P. S., Sedykh E. A., Khodzitsky M. K. Optical properties of human nails in THz frequency range. Journal of Biomedical Photonics & Engineering, 2016, 2 (4), P. 040306.

24. Bespalov V. G., GorodetskiȈı A. A., Denisyuk I. Yu., Kozlov S. A., Krylov V. N., LukomskiȈı G. V., Petrov N. V., Putilin S. E. Methods of generating superbroadband terahertz pulses with femtosecond lasers. Journal of Optical Technology, 2008, 75 (10), P. 636–642.

25. Zhang, Xi-Cheng, Jingzhou Xu. Introduction to THz wave photonics. Springer, New York, 2010., P. 40–43.

26. Sheffield C. A., Kane M. P., Bakst G., Busch R. S., Abelseth J. M., Hamilton R. A. Accuracy and precision of four value-added blood glucose meters: the Abbott Optium, the DDI Prodigy, the HDI True Track, and the HypoGuard Assure Pro. Diabetes Technology & Therapeutics, 2009, 11 (9), P. 587–592.

27. Biester T., Danne T., Bl¨asig S., Remus K., Aschemeier B., Kordonouri O., Bardtrum L., Haahr H. Pharmacokinetic and prandial pharmacodynamic properties of insulin degludec/insulin aspart in children, adolescents, and adults with type 1 diabetes. Pediatric Diabetes, 2016, 17 (8), P. 642–649.

28. Van Exter M., Fattinger C., Grischkowsky D. Terahertz timedomain spectroscopy of water vapor. Optics letters, 1989, 14 (20), P. 1128– 1130.

29. Bogner P., Sipos K., Ludany A., Somogyi B., Miseta A. Steadystate volumes and metabolism-independent osmotic adaptation in mammalian erythrocytes. European Biophysics Journal, 2002, 31 (2), P. 145–152.

30. Jain S. K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. Journal of Biological Chemistry, 1989, 264 (35), P. 21340–21345.

31. Son J.-H. Terahertz Biomedical Science and Technology. CRC Press, Boca Raton., 2014. P. 347–350.

32. Nˇemec H., Kadlec F., Kuˇzel P, Duvillaret L, Coutaz L. Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy. Optics communications, 2006, 260 (1), P. 175–183.

33. Hasegawa K., Pereira B. P. The microvasculature of the nail bed, nail matrix, and nail fold of a normal human fingertip. Journal of Hand Surgery, 2001, 26 (2), P. 283–290.


Review

For citations:


Gusev S.I., Demchenko P.S., Litvinov E.A., Cherkasova O.P., Meglinski I.V., Khodzitsky M.K. Study of glucose concentration influence on blood optical properties in THz frequency range. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(3):389-400. https://doi.org/10.17586/2220-8054-2018-9-3-389-400

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)