Phonon transmission across an interface between two crystals
https://doi.org/10.17586/2220-8054-2016-7-6-971-982
Abstract
A new model of phonon transmission across interface between two crystals is proposed which takes into account the mismatch of crystal lattices. It has been found that the mismatch of lattices results in phonon scattering at the interface even in the absence of defects. As it has been shown, at the normal incidence, longitudinally polarized phonons have much larger transmission coefficient than that of transversely polarized phonons, excluding special resonance cases. Allowance for this factor results in a calculated Kapitza resistance value that is approximately three times greater. For the quasi one-dimensional case, an exact solution has been obtained.
About the Author
A. P. MeilakhsRussian Federation
St. Petersburg
References
1. Kidalov S. V., Shakhov F. M. Thermal Conductivity of Diamond Composites. Materials, 2009, 2, P. 2467–2495.
2. Zhang C., Wang R., et al. Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles. J. Material Science, 2015, 26, P. 185-190.
3. Li B., Wang L., Casati G. Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett., 2006, 88, 143501.
4. Terraneo M., Peyrard M., Casati G. Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier. Phys. Rev. Lett., 2002, 88, P. 094302.
5. Wang L., Li B. Thermal Memory: A Storage of Phononic Information. Phys. Rev. Lett., 2008, 101, P. 267203.
6. Khalatnikov I. M. Heat Transfer Between Solids and Liquid Helium II. JETP, 1952, 22, P. 687
7. Little W. A. The Transport Of Heat Between Dissimilar Solids At Low Temperatures. Can. J. Phys., 1959, 37, P. 334–349.
8. Stoner R. J., Maris H. J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B, 1993, 48, P. 16373.
9. Swartz T., Pohl R. O. Thermal resistance at interfaces. Rev. Mod. Phys., 1989, 61, P. 605–608.
10. Zhang L., Keblinski P., Wang J.-S., Li B. Interfacial thermal transport in atomic junctions. Phys. Rev. B, 2011, 83, P. 064303.
11. Meilakhs A. P., Eidelman E. D. New Model of Heat Transport across the MetalInsulator Interface by the Example of Boundaries in a DiamondMetal Composite. JETP Letters, 2013, 97, P. 38–40.
12. Young D. A., Maris H. J. Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. Phys. Rev. B, 1989, 40, P. 3685–3693.
13. Hu M., Keblinski P., Schelling P. K. Kapitza conductance of siliconamorphous polyethylene interfaces by molecular dynamics simulations. Phys. Rev. B, 2009, 79, P. 104305.
14. Tian Z., Esfarjani K., Chen G. Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Greens function method. Phys. Rev. B, 2012, 86, P. 235304.
15. Saaskilahti K., Oksanen J., Tulkki J., Volz S. Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Phys. Rev. B, 2014, 90, P. 134312.
16. Yang N., Luo T. et. al. Thermal Interface Conductance between Aluminum and Silicon by Molecular Dynamics Simulations. J. Comp. and Theor. Nanoscience, 2015, 12, P. 168.
17. Anselm A. I. Introduction to Semiconductor Theory. Englewood Cliffs.: Prentice-Hall, 1981.
18. Arnold V. I. Collected Works, Vol. 1, Springer, 2009, 253 p.
19. Landau L. D., Lifshitz E. M. Course of Theoretical Physics, Vol. 7: Theory of Elasticity. New York.: Pergamon, 1986.
20. Meilakhs A. P. Nonequilibrium Distribution Function in the Presence of a Heat Flux at the Interface between Two Crystals. Phys. Solid State, 2015, 57, P. 148–152.
Review
For citations:
Meilakhs A.P. Phonon transmission across an interface between two crystals. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(6):971-982. https://doi.org/10.17586/2220-8054-2016-7-6-971-982