Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Optical properties and photocatalytic activity of nanocrystalline TiO2 doped by 3d-metal ions

https://doi.org/10.17586/2220-8054-2018-9-3-401-409

Abstract

The influence of impurities on optical and photocatalytic properties was studied in a series of nanocrystalline TiO2 with similar coherent scattering region sizes, phase compositions, surface areas and lattice parameters doped by Fe, Cr, Mn and V ions. Doping leads to an increase of absorption in the visible part of the spectrum due to the formation of additional levels in the band gap. In the case of Fe and Cr ions, d-d transitions are observed, whereas in the case of Mn and V ions, an additional band is associated with the transition from impurity level to Ec. The presence of impurities effectively suppresses photocatalytic activity in the methyl orange decoloration reaction.

About the Authors

I. V. Kolesnik
Lomonosov Moscow State University; Institute of General and Inorganic Chemistry
Russian Federation

Leninskie Hills, 1, Moscow, 119992

Leninsky avenue, 31, Moscow, 119991



V. A. Lebedev
Lomonosov Moscow State University
Russian Federation

Leninskie Hills, 1, Moscow, 119992



A. V. Garshev
Lomonosov Moscow State University; Institute of Metallurgy
Russian Federation

Leninskie Hills, 1, Moscow, 119992

Leninsky avenue, 49, Moscow, 119334



References

1. Herrmann J.-M. Detrimental cationic doping of titania in photocatalysis: why chromium Cr3+-doping is a catastrophe for photocatalysis, both under UV- and visible irradiations. New J. Chem., 2012, 36, P. 883–890.

2. Bettinelli M., Speghini A., Falcomer D., Daldosso M., Dallacasa V., Romano V. Photocatalytic, spectroscopic and transport properties of lanthanide-doped TiO2 nanocrystals. J. Phys.: Condens. Matter, 2006, 18, P. S2149–S2160.

3. Cui L.,Wang Yu., Niu M., Chen G., Cheng Y. Synthesis and visible light photocatalysis of Fe-doped TiO2 mesoporous layers deposited on hollow glassmicrobeads. Journal of Solid State Chemistry, 2009, 182, P. 2785–2790.

4. Karvinen S., Lamminm¨ak R.-J. Preparation and characterization of mesoporous visible-light-active anatase. Solid State Sciences, 2003, 5, P. 1159–1166.

5. Kumbhar A., Chumanov G. Synthesis of iron(III)-doped titania nanoparticles and its application for photodegradation of sulforhodamine-B pollutant. Journal of Nanoparticle Research, 2005, 7, P. 489–498.

6. Li G., Liu C., Liu Yu. Different effects of cerium ions doping on properties of anatase and rutile TiO2. Applied Surface Science, 2006, 253, P. 2481–2486.

7. Liu B., Wanga X., Caia G., Wen L., Song Y., Zhao X. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. Journal of Hazardous Materials, 2009, 169, P. 1112–1118.

8. Liu S., Xie T., Chen Z., Wu J. Highly active V–TiO2 for photocatalytic degradation of methyl orange. Applied Surface Science, 2009, 255, P. 8587–8592.

9. Andreas Mattsson A., Leideborg M., Karin Larsson, Westin G., Osterlund L. Adsorption and Solar Light Decomposition of Acetone on Anatase TiO2 and Niobium Doped TiO2 Thin Films. J. Phys. Chem. B, 2006, 110, P. 1210-1220.

10. Ranjit K.T., Willner I., Bossmann S.H., Braun A.M. Lanthanide Oxide Doped Titanium Dioxide Photocatalysts: Effective Photocatalysts for the Enhanced Degradation of SalicylicAcid and t-Cinnamic Acid. Journal of Catalysis, 2001, 204(2), P. 305–313.

11. Xiao J., Peng T., Li R., Peng Z., Yan C. Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles. Journal of Solid State Chemistry, 2006, 179, P. 1161–1170.

12. Xin B., Ren Z., Wang P., Liu J., Jing L., Fu H. Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts. Applied Surface Science, 2007, 253, P. 4390–4395.

13. Silva A.M.T., Silva C.G., Drazic G., Faria J.L. Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catalysis Today, 2009, 144, P. 13–18.

14. Kemp T.J., McIntyre R.A., Transition metal-doped titanium(IV) dioxide: Characterisation and influence on photodegradation of poly(vinyl chloride). Polymer Degradation and Stability, 2006, 91, P. 165–194.

15. Kolesnik I.V., Chebotaeva G.S., Yashina L.V., Konstantinova E.A., Eliseev A.A., Lukashin A.V., Tretyakov Yu.D. Preparation of nanocrystalline nitrogen-doped mesoporous titanium dioxide. Mendeleev Communications, 2012, 23(1), P. 11–13.

16. Savio A.K.P.D., Fletcher J., Robles Hernandez F.C. Sonosynthesis of nanostructured TiO2 doped with transitionmetals having variable bandgap. Ceramics International, 2013, 39, P. 2753–2765

17. Di Paola A., Marci G., Palmisano L., Schiavello M., Uosaki K., Ikeda S., B. Ohtani B. Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol. J. Phys. Chem. B, 2002, 106, P. 637–645.

18. Serpone N. Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? J. Phys. Chem. B, 2006, 110, P. 24287–24293.

19. Kuznetsov V.N., Serpone N. Visible Light Absorption by Various Titanium Dioxide Specimens. J. Phys. Chem. B, 2006, 110, P. 25203– 25209.

20. Kuznetsov V.N., Serpone N. On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments. J. Phys. Chem. C, 2009, 113, P. 15110–15123.

21. Lebedev V.A., Kozlov D.A., Kolesnik I.V., Poluboyarinov A.S., Becerikli A.E. Grnert W., Garshev A.V. The amorphous phase in titania and its influence on photocatalytic properties. Applied Catalysis B: Environmental, 2016, 195, P. 39–47.

22. Di Paola A., Bellardita M. Palmisano L., Barbierikova Z., Brezova V. Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 273, P. 59–67.

23. Sakatani Y., Grosso D., Nicole L., Boissiere C., Soler-Illia G.J. de A.A., Sanchez C.J. Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility. Mater. Chem., 2006, 16, P. 77–82.

24. Petricek X.V., Dusek M., Palatinus L. Crystallographic Computing System JANA2006: General features. Zeitschrift f¨ur Kristallographie - Crystalline Materials, 2014, 229, P. 345352–34356.

25. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2-H2O system. Nanosystems: physics, chemistry, mathematics, 2016, 7(6), P. 1031–1049.

26. Vildanova M.F., Kozlov S.S., Nikolskaia A.B., Shevaleevskiy O.I., Tsvetkov N.A., Alexeeva O.V., Larina L.L. Niobium-doped titanium dioxide nanoparticles for electron transport layers in perovskite solar cells. Nanosystems: physics, chemistry, mathematics, 2017, 8(4), P. 540–545.

27. Pankove J.I. Optical Processes in Semiconductors. Dover Publications, Inc., New York, 1975, 343 p.

28. Tang H., Levy F., Berger H., Schmid P.E. Urbach tail of anatase TiO2. Physical Review B, 1995, 52(11), P. 7771–7774.

29. Di Paola A., Bellardita M., Palmisano L., Parrino F. Junction Effect on the Photocatalytic Activity of Mixed-Phase TiO2 Nanoparticles. ECS Transactions, 2010, 25(42), P. 29-35.

30. Emeline A.V., Kuznetsov V.N., Rybchuk V.K., Serpone N. Visible-Light-Active Titania Photocatalysts: The Case of N-Doped TiO2 -Properties and Some Fundamental Issues. International Journal of Photoenergy, 2008, P. 1-19.

31. Sekiya T., Ichimura K., Igarashi M., Kurita S. Absorption spectra of anatase TiO2 single crystals heat-treated under oxygen atmosphere. Journal of Physics and Chemistry of Solids, 2000, 61, P. 1237–1242.

32. Mizushima K., Tanaka M., Asai A., Iida S., Goodenough J.B. Impurity Levels Of Iron-Group Ions In TiO2. J Phys. Chem. Solids, 1979, 10, P. 1129–1140

33. Wood D.L., Imbusch G.F., Macfarlane R.M., Kisliuk P., and Larkin D.M. Optical Spectrum of Cr3+ Ions in Spinels. The Journal of Chemical Physics, 1968, 48, P. 5255–5263.

34. Low W. Absorption Lines of Cr3+ in Ruby. The Journal of Chemical Physics, 1960, 33, P. 1162–1163.

35. Reddy B.J., Frost R.L. Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba. Spectrochimica Acta Part A, 2005, 61, P. 1721–1728.

36. Bosi F., H˚alenius U., Andreozzi G.B., Skogby H., Lucchesin S. Structural refinement and crystal chemistry of Mn-doped spinel: A case for tetrahedrally coordinated Mn3+ in an oxygen-based structure. American Mineralogist, 2007, 92, P. 27–33.

37. Brenier A., Madej C., Pedrini C., Boulon G. Crystal growth and luminescence properties of calcium- and vanadium-doped gadolinium gallium garnet. Chemical Physics Letters, 1991, 177(6), P. 590–592.

38. Karthikeyan N., Narayanan V., Stephen A. Visible light degradation of textile effluent using nanostructured TiO2/Ag/CuO photocatalysts. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 695–698.

39. Kozlov D.A., Lebedev V.A., Polyakov A.Yu, Khazova K.M., Garshev A.V. The microstructure effect on the Au/TiO2 and Ag/TiO2 nanocomposites photocatalytic activity. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(2), P. 266–278.

40. Popov A.L, Savintseva I.V., Mysina E.A., Shcherbakov A.B., Popova N.R., Ivanova O.S., Ivanov V.K. Cytotoxicity analysis of gadolinium doped cerium oxide nanoparticles on human mesenchymal stem cells. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3), P. 18–25.


Review

For citations:


Kolesnik I.V., Lebedev V.A., Garshev A.V. Optical properties and photocatalytic activity of nanocrystalline TiO2 doped by 3d-metal ions. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(3):401-409. https://doi.org/10.17586/2220-8054-2018-9-3-401-409

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)