Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

On an adsorption/photocatalytic performance of nanotubular Mg3Si2O5(OH)4/TiO2 composite

https://doi.org/10.17586/2220-8054-2018-9-3-410-416

Abstract

Here, we study a performance of nanotubular Mg3Si2O5(OH)4/TiO2 hybrid adsorbent/photocatalyst in the process of decolorizing an aqueous solution of crystal violet. The composite material was produced by hydrothermal treatment with one or more subsequent cycles of TiCl4 treatment and vapor-phase hydrolysis according to the molecular layering technique. Decolorization was observed in situ by UV-VIS spectroscopy. It was found that TiO2 deposition yields 2 to 3 times improvement of decolorization performance. Depending on TiO2 phase type – amorphous or crystalline – this rise is related with either enhancement of adsorption rate either appearance of photocatalytic activity. Finally, fitting procedure issues in case of complex decolorization process were discussed.

About the Authors

A. A. Krasilin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Ioffe Institute
Russian Federation

31 Leninsky prospect, Moscow 119991

26 Politekhnicheskaya street, St. Petersburg, 194021



I. S. Bodalyov
Saint-Petersburg State Institute of Technology
Russian Federation

26 Moskovskiy Prospekt, St. Petersburg 190013



A. A. Malkov
Saint-Petersburg State Institute of Technology
Russian Federation

26 Moskovskiy Prospekt, St. Petersburg 190013



E. K. Khrapova
Ioffe Institute
Russian Federation

26 Politekhnicheskaya street, St. Petersburg, 194021



T. P. Maslennikova
Institute of Silicate Chemistry, Russian Academy of Sciences
Russian Federation

2 Naberezhnaya Admirala Makarova, St. Petersburg 199034



A. A. Malygin
Saint-Petersburg State Institute of Technology
Russian Federation

26 Moskovskiy Prospekt, St. Petersburg 190013



References

1. Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E., Agarwal S., Tkachev A.G., Gupta V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf., 2018, 148, P. 702–712.

2. Khin M.M., Nair A.S., Babu V.J., Murugan R., Ramakrishna S. A review on nanomaterials for environmental remediation. Energy Environ. Sci., 2012, 5 (8), P. 8075.

3. Cai Z., Sun Y., Liu W., Pan F., Sun P., Fu J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res., 2017, 24 (19), P. 15882–15904.

4. Ali I., Gupta V.K. Advances in water treatment by adsorption technology. Nat. Protoc., 2007, 1 (6), P. 2661–2667.

5. Kamaruddin M.A., Yusoff M.S., Aziz H.A., Akinbile C.O. Recent developments of textile waste water treatment by adsorption process: a review. Int. J. Sci. Res. Knowl, 2013, P. 60–73.

6. Mittal A., Mittal J., Malviya A., Kaur D., Gupta V.K. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci., 2010, 343 (2), P. 463–473.

7. Gupta V.K., Kumar R., Nayak A., Saleh T.A., Barakat M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci., 2013, 193–194, P. 24–34.

8. Peter A., Mihaly-Cozmuta A., Nicula C., Mihaly-Cozmuta L., Jastrzbska A., Olszyna A., Baia L. UV light-assisted degradation of methyl orange, methylene blue, phenol, salicylic acid, and rhodamine B: photolysis versus photocatalyis. Water, Air, Soil Pollut., 2017, 228 (1), P. 41.

9. Mohmood I., Lopes C.B., Lopes I., Ahmad I., Duarte A.C., Pereira E. Nanoscale materials and their use in water contaminants removal – a review. Environ. Sci. Pollut. Res., 2013, 20 (3), P. 1239–1260.

10. Chakma S., Moholkar V.S. Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason. Sonochem., 2015, 22, P. 287–299.

11. Chu K.H., Al-Hamadani Y.A.J., Park C.M., Lee G., Jang M., Jang A., Her N., Son A., Yoon Y. Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: A review. Chem. Eng. J., 2017, 327, P. 629–647.

12. Kozlov D.A., Lebedev V.A., Polyakov A.Y., Khazova K.M., Garshev A.V. The microstructure effect on the Au/TiO2 and Ag/TiO2 nanocomposites photocatalytic activity. Nanosyst.: Phys. Chem. Math., 2018, 9 (2), P. 266–278.

13. Korytkova E.N., Maslov A.V., Pivovarova L.N., Drozdova I.A., Gusarov V.V. Formation of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glas. Phys. Chem., 2004, 30 (1), P. 51–55.

14. Falini G., Foresti E., Gazzano M., Gualtieri A.F., Leoni M., Lesci I.G., Roveri N. Tubular-shaped stoichiometric chrysotile nanocrystals. Chem. Eur. J., 2004, 10 (12), P. 3043–3049.

15. Bloise A., Belluso E., Catalano M., Barrese E., Miriello D., Apollaro C. Hydrothermal alteration of glass to chrysotile. J. Am. Ceram. Soc., 2012, 95 (10), P. 3050–3055.

16. Lafay R., Montes-Hernandez G., Janots E., Chiriac R., Findling N., Toche F. Nucleation and growth of chrysotile nanotubes in H2SiO3/MgCl2/NaOH medium at 90 to 300 ◦C. Chem. Eur. J., 2013, 19 (17), P. 5417–5424.

17. Krasilin A.A., Nevedomsky V.N., Gusarov V.V. Comparative energy modeling of multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 nanoscroll growth. J. Phys. Chem. C., 2017, 121 (22), P. 12495–12502.

18. Bloise A., Belluso E., Fornero E., Rinaudo C., Barrese E., Capella S. Influence of synthesis conditions on growth of Ni-doped chrysotile. Microp. Mesop. Mater., 2010, 132 (1–2), P. 239–245.

19. McDonald A., Scott B., Villemure G. Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate. Microp. Mesop. Mater., 2009, 120 (3), P. 263–266.

20. Krasilin A.A., Gusarov V.V. Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosyst.: Phys. Chem. Math., 2017, 8 (5), P. 620–627.

21. Korytkova E.N., Pivovarova L.N. Hydrothermal synthesis of nanotubes based on (Mg,Fe,Co,Ni)3Si2O5(OH)4 hydrosilicates. Glas. Phys. Chem., 2010, 36 (1), P. 53–60.

22. Piperno S. et al. Characterization of geoinspired and synthetic chrysotile nanotubes by atomic force microscopy and transmission electron microscopy. Adv. Funct. Mater., 2007, 17 (16), P. 3332–3338.

23. Korytkova E.N., Pivovarova L.N., Semenova O.E., Drozdova I.A., Povinich V.F., Gusarov V.V. Hydrothermal synthesis of nanotubular Mg-Fe hydrosilicate. Russ. J. Inorg. Chem., 2007, 52 (3), P. 338–344.

24. Krasilin A.A., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of variable-composition iron(III) hydrosilicates with the chrysotile structure. Russ. J. Gen. Chem., 2016, 86 (12), P. 2581-2588.

25. White R.D., Bavykin D. V, Walsh F.C. Morphological control of synthetic Ni3Si2O5(OH)4 nanotubes in an alkaline hydrothermal environment. J. Mater. Chem. A., 2013, 1 (3), P. 548–556.

26. Artali R., Del Pra A., Foresti E., Lesci I.G., Roveri N., Sabatino P. Adsorption of human serum albumin on the chrysotile surface: a molecular dynamics and spectroscopic investigation. J. R. Soc. Interface, 2008, 5 (20), P. 273–283.

27. Valentim I.B., Joekes I. Adsorption of sodium dodecylsulfate on chrysotile. Coll. Surf., A: Physicochem., Eng. Aspects, 2006, 290 (1–3), P. 106–111.

28. Teixeira A.P.C., Purceno A.D., de Paula C.C.A., da Silva J.C.C., Ardisson J.D., Lago R.M. Efficient and versatile fibrous adsorbent based on magnetic amphiphilic composites of chrysotile/carbon nanostructures for the removal of ethynilestradiol. J. Hazard. Mater., 2013, 248–249, P. 295–302.

29. Cheng L.L., Wei X.D., Hao X.L., Ruan D., Yu S.M. The removal of strontium(II) and neodymium(III) from their aqueous solutions on chrysotile nanotubes. Adv. Mater. Res., 2014, 881–883, P. 519–524.

30. Yu S., Zhai L., Wang Y., Liu X., Xu L., Cheng L. Synthesis of magnetic chrysotile nanotubes for adsorption of Pb(II), Cd(II) and Cr(III) ions from aqueous solution. J. Environ. Chem. Eng., 2015, 3 (2), 752–762.

31. Cheng L., Ren X., Wei X., Sun X., Yu S. Facile synthesis and characterization of chrysotile nanotubes and their application for lead(II) removal from aqueous solution. Sep. Sci. Technol., 2014, 50 (5), P. 700–709.

32. Golubeva O.Y., Maslennikova T.P., Ulyanova N.Y., Dyakina M.P. Sorption of lead(II) ions and water vapors by synthetic hydro- and aluminosilicates with layered, framework, and nanotube morphology. Glas. Phys. Chem., 2014, 40 (2), P. 250–255.

33. Chong M.N., Jin B., Chow C.W.K., Saint C. Recent developments in photocatalytic water treatment technology: A review. Water Res., 2010, 44 (10), P. 2997–3027.

34. Karthikeyan N., Narayanan V., Stephen A. Visible light degradation of textile effluent using nanostructured TiO2/Ag/CuO photocatalysts. Nanosyst.: Phys. Chem. Math., 2016, 7 (4), P. 695–698.

35. Subramanian V.R., Sarker S., Yu B., Kar A., Sun X., Dey S.K. TiO2 nanotubes and its composites: Photocatalytic and other photo-driven applications. J. Mater. Res., 2013, 28 (3), P. 280–293.

36. Zhukovskiy M.A., Smirnova N.P., Rusetsky I.A., Kolbasov G.Y., Eremenko A.M. Physical and chemical properties and photocatalytic activity of nanostructured TiO2/CdS Films. J. Appl. Spectrosc., 2014, 81 (2), P. 238–243.

37. Kozlova E.A., Kozhevnikova N.S., Cherepanova S.V., Lyubina T.P., Gerasimov E.Y., Kaichev V.V., Vorontsov A.V., Tsybulya S.V., Rempel A.A., Parmon V.N. Photocatalytic oxidation of ethanol vapors under visible light on CdS–TiO2 nanocatalyst. J. Photochem. Photobiol. A Chem., 2012, 250, P. 103–109.

38. Kozlova E.A., Rempel’ A.A., Valeeva A.A., Gorbunova T.I., Kozhevnikova N.S., Cherepanova S.V., Gerasimov E.Yu., Saraev A.A., Korovin E.Yu., Parmon V.N. Photoactivity of TiO2/CdS and SiO2/CdS hybrid nanostructured systems in the partial oxidation of ethanol under irradiation with visible light. Kinet. Catal., 2015, 56 (4), P. 515–522.

39. Zheng L., Han S., Liu H., Yu P., Fang X. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small, 2016, 12 (11), P. 1527–1536.

40. Chen J.-Z., Chen T.-H., Lai L.-W., Li P.-Y., Liu H.-W., Hong Y.-Y., Liu D.-S. Preparation and characterization of surface photocatalytic activity with NiO/TiO2 nanocomposite structure. Materials (Basel), 2015, 8 (7), P. 4273–4286.

41. Wang Y.-F., Hsieh M.-C., Lee J.-F., Yang C.-M. Nonaqueous synthesis of CoOx/TiO2 nanocomposites showing high photocatalytic activity of hydrogen generation. Appl. Catal. B Environ., 2013, 142, P. 626–632.

42. Szczepanik B. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl. Clay Sci., 2017, 141, P. 227–239.

43. Maksimov V.D., Shaporev A.S., Ivanov V.K., Churagulov B.R., Tret’yakov Y.D. Hydrothermal synthesis of nanocrystalline anatase from aqueous solutions of titanyl sulfate for photocatalytic applications. Theor. Found. Chem. Eng., 2009, 43 (5), P. 713–718.

44. Meskin P.E., Gavrilov A.I., Maksimov V.D., Ivanov V.K., Churagulov B.P. Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia. Russ. J. Inorg. Chem., 2007, 52 (11), P. 1648–1656.

45. Sadovnikov A.A., Baranchikov A.E., Zubavichus Y.V., Ivanova O.S., Murzin V.Y., Kozik V.V., Ivanov V.K. Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment. J. Photochem. Photobiol. A Chem., 2015, 303, P. 36–43.

46. Malygin A.A., Malkov A.A., Sosnov E.A. Structural-dimensional effects and their application in the “core–nanoshell” systems synthesized by molecular layering. Russ. Chem. Bull., Int. Ed., 2017, 66 (11), P. 1939–1962.

47. Abdulagatov A.I., Hall R.A., Sutherland J.L., Lee B.H., Cavanagh A.S., George S.M. Molecular layer deposition of titanicone films using TiCl4 and ethylene glycol or glycerol: growth and properties. Chem. Mater., 2012, 24 (15), P. 2854–2863.

48. Maslennikova T.P., Korytkova E.N. Regularities of the filling of Mg3Si2O5(OH)4 hydrosilicate nanotubes with solutions of sodium hydroxide and sodium chloride. Glas. Phys. Chem., 2011, 37 (4), P. 418–425.

49. Bodalyov I.S., Malkov A.A., Korytkova E.N., Maslennikova T.P., Malygin A.A. Temperature factor in interaction of nanotubular magnesium hydrosilicate, Mg3Si2O5(OH)4, with titanium tetrachloride and water vapors. Russ. J. Appl. Chem., 2014, 87 (2), P. 151–159.

50. Krasilin A.A., Gusarov V.V. Control over morphology of magnesium-aluminum hydrosilicate nanoscrolls. Russ. J. Appl. Chem., 2015, 88 (12), P. 1928–1935.

51. Chiron N., Guilet R., Deydier E. Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models. Water Res., 2003, 37 (13), P. 3079–3086.

52. Wilczak A., Keinath T.M. Kinetics of sorption and desorption of copper(II) and lead (II) on activated carbon. Water Environ. Res., 1993, 65 (3), P. 238–244.

53. Plazinski W., Rudzinski W., Plazinska A. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid Interface Sci., 2009, 152 (1-2), P. 2–13.


Review

For citations:


Krasilin A.A., Bodalyov I.S., Malkov A.A., Khrapova E.K., Maslennikova T.P., Malygin A.A. On an adsorption/photocatalytic performance of nanotubular Mg3Si2O5(OH)4/TiO2 composite. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(3):410-416. https://doi.org/10.17586/2220-8054-2018-9-3-410-416

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)