Silicene is a phantom material
https://doi.org/10.17586/2220-8054-2016-7-6-983-1001
Abstract
The paper presents a comparative consideration of sp2 nanocarbons and their silicon and higher tetrels analogues from the viewpoint of the spin molecular theory taking into account the electron correlation in open-shell molecules. High radicalization of silicene and quantum instability of flat honeycomb 2D structures of germanene and stanene make all the species phantom materials leaving graphene the only one-atom thick 2D solid free of the crucial restrictions.
Keywords
About the Author
E. F. ShekaRussian Federation
Department of Theoretical Physics and Mechanics
Str. Miklukho-Maklay, 6, Moscow 117198
References
1. Takeda K., Shiraishi K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B, 1994, 50, P. 14916– 14922.
2. Guzman-Verri G., Lew Yan Voon L.C. Electronic structure of silicon-based nanostructures. Phys. Rev. B, 2007, 76, P. 075131.
3. Kara A., Enriquez H., Seitsonen A.P., Voon L.L.Y., Vizzini S., Aufray B., Oughaddou H. A review on silicene - new candidate for electronics. Surf. Sci. Rep., 2012, 67, P. 1–18.
4. Yamada-Takamura Y., Friedlein R. Progress in the materials science of silicene. Sci. Technol. Adv. Mater., 2014, 15, P. 064404(12pp).
5. Voon L.L.I., Guzman-Verri G.G. Is silicene the next graphene? ` MRS Bull, 2014, 39, P. 366–373.
6. Bhimanapati G.R., Lin Z., Meunier V., Jung Y., Cha J., Das S., Xiao D., Son Y., Strano M.S., Cooper V.R., Liang L., Louie S.G., Ringe E., Zhou W., Sumpter B.G., Terrones H., Xia F., Wang Y., Zhu J., Akinwande D., Alem N., Schuller J.A., Schaak R.E., Terrones M., Robinson J.A. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 22, P. 12168–12173.
7. Oughaddou H., Enriquez H., Tchalala M., Yildirim H., Mayne A., Bendounan A., Dujardin G., Ali M., Kara A. Silicene, a promising new 2D material. Prog. Surf. Sci., 2015, 90, P. 46–83.
8. Lew Yan Voon L.C. Zhu J. Schwingenschloechloel U. Silicene: Recent teoretical advances. Appl. Phys. Rev.,2016, 3, P. 040802.
9. Kara A., Leandri C., D ´ avila M.E., De Padova P., Ealet B., Oughaddou H., Aufray B., Le Lay G. Physics of silicene stripes. ´ J. Supercond Nov. Magn., 2008/2009, 22, P. 259–263.
10. Sheka E.F. May silicene exist?, 2009. arXiv:0901.3663 [cond-mat.mtrl-sci].
11. Vogt P., De Padova P., Quaresima C., Avila J., Frantzeskakis J., Asensio M.C., Resta A., Ealet B., Le Lay G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett., 2012, 108, P. 155501.
12. Lin C.-N., Arafune R., Kawahara R., Tsukahara N., Minamitani E., Kim Y., Takagi N., Kawai N. Structure of silicene grown on Ag(111). Appl. Phys. Express, 2012, 5, P. 045802.
13. Chiappe D., Grazianetti C., Tallarida G., Fanciulli M., Molle A. Local electronic properties of corrugated silicene phases. Adv. Mater., 2012, 24, P. 5088–5093.
14. Chen L., Liu C.C., Feng B., He X., Cheng P., Ding Z., Meng S., Yao Y.G., Wu K.H. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett., 2012, 109, P. 056804.
15. Fleurence A., Friedlein R., Ozaki T., Kawai H., Wang Y., Yamada-Takamura Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett., 2012, 108, P. 245501.
16. Meng L., Wang Y., Zhang L., Du S., Wu R., Li L., Zhang Y., Li G., Zhou H., Hofer W.A., Gao H.J. Buckled silicene formation on Ir(111). Nano Lett., 2013, 13, P. 685–690.
17. Zhong H.-X., Quhe R.-G., Wang Y.-Y., Shi J.-J., L¨u J. Silicene on substrates: A theoretical perspective. Chin. Phys. B, 2015, 24, P. 087308.
18. Tao L., Cinquanta E., Chiappe D., Grazianetti C., Fanciulli M., Dubey M., Molle A., Akinwande D. Silicene field-effect transistors operating at room temperature. Nat. Techn., 2015, 10, P. 227–231.
19. Sheka E.F. Why sp2 -like nanosilicons should not form: Insight from quantum chemistry. Int J. Quant. Chem., 2013, 113, P. 612–618.
20. Liu C.-C., Feng W., Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett., 2011, 107, P. 076802.
21. Cahangirov S., Topsakal M., Akt ¨urk E., S¸ ahin H., Ciraci S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett., 2009, 102, P. 236804.
22. Avramov P., Demin V., Luo M., Choi C.H., Sorokin P.B., Yakobson B., Chernozatonskii L. Translation symmetry breakdown in lowdimensional lattices of pentagonal rings. J. Phys. Chem. Lett., 2015, 6, P. 4525–4531.
23. Sheka E.F. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. CRC Press, Taylor and Francis Group: Boca Raton, 2011.
24. Sheka E.F. Spin-orbit concept of open-shell systems, 2015. arXiv: 1511:05483 [physics.chem-ph].
25. Sheka E.F. Stretching and breaking of chemical bonds, correlation of electrons, and radical properties of covalent species. Adv. Quant. Chem., 2015, 70, P. 111–161.
26. Morkin T.L., Owens T.R., Leigh W.J. Kinetic studies of the reactions of Si=C and Si-Si bonds. in The Chemistry of Organic Silicon Compounds, ed. Z. Rappoport and Y. Apeloig, John Wiley & Sons, Chichester, 2001, Vol. 3, P. 949–1026.
27. Karni M., Kapp J., Schleyer P.R., Apeloig Y. Theoretical aspects of compounds containing Si, Ge, Sn and Pb. in The Chemistry of Organic Silicon Compounds, ed. Z. Rappoport and Y. Apeloig, John Wiley & Sons, Chichester, 2001, Vol. 3, P. 1–164.
28. Wang S. A comparative first-principles study of orbital hybridization in two-dimensional C, Si, and Ge. Phys. Chem. Chem. Phys., 2011, 13, P. 11929–11938.
29. Sheka E.F., Chernozatonskii L.A. Bond length effect on odd electrons behavior in single-walled carbon nanotubes. J. Phys. Chem. A, 2007, 111, P. 10771.
30. Fucutome H. Unrestricted Hartree-Fock theory and its applications to molecules and chemical reactions. Int. J. Quant. Chem., 1981, 20, P. 955–1065.
31. Andriotis A.N., Richter E., Menon M. Prediction of a new graphenelike Si2BN solid. Phys. Rev. B, 2016, 93, P. 081413(R).
32. Aselage T.L. The coexistence of silicon borides with boron-saturated silicon: Metastability of SiB3. J. Mat. Res., 1998, 13, P. 1786–1794.
33. Hoffmann R. Small but strong lessons from chemistry for nanoscience. Angew Chem. Int. Ed., 2012, 51, P. 2–13.
34. Zhao M., Zhang R. Two-dimensional topological insulators with binary honeycomb lattices: SiC3 siligraphene and its analogs. Phys. Rev. B, 2014, 89, P. 195427.
35. Shi Z., Zhang Z., Kutana A., Yakobson B.I. Predicting two dimensional silicon carbide monolayers. ACS Nano, 2015, 9, P. 9802–9809.
36. Dong H., Zhou L., Frauenheim T., Hou T., Lee S.-T., Li Y. SiC7 siligraphene: Novel donor material with extraordinary sunlight absorption. Nanoscale, 2016, 8, P. 6994–6999.
37. Balendhran S., Walia S., Nili H., Sriram S., Bhaskaran M. Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small, 2015, 11, P. 640–652.
38. Trivedi S., Srivastava A., Kurchania R. Silicene and germanene: A first principle study of electronic structure and effect of hydrogenationpassivation. J. Comp. Theor. Nanosci., 2014, 11, P. 781–788.
39. Xu Y., Yan B., Zhang H.-J., Wang J., Xu G., Tang P., Duan W., Zhang S.-C. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett., 2013, 111, P. 136804.
40. Cai B., Zhang S., Hu Z., Hu Y., Zoua Y. Zeng H. Tinene: a two-dimensional Dirac material with a 72 meV band gap. Phys. Chem. Chem. Phys., 2015, 17, P. 12634–12638.
41. Derivaz M., Dentel D., Stephan R., Hanf M.-C., Mehdaoui A., Sonnet P., Pirri C. Continuous germanene layer on Al(111). Nano Lett., 2015, 15, P. 2510–2516.
42. Tsai H.-S., Chen Y.-Z., Medina H., Su T.-Y., Chou T.-S., Chen Y.-H., Chueh Y.-L., Liang J.-O. Direct formation of large-scale multi-layered germanene on Si substrate. Phys. Chem. Chem. Phys., 2015, 17, P. 21389–21393.
43. Zhu F.-F., Chen W.-J., Xu Y., Gao C.-l., Guan D.-D., Liu C.-H., Qian D., Zhang S.-C., Jia J.-F. Epitaxial growth of two-dimensional stanene. Nat. Mat., 2015, 14, P. 1020–1025.
Review
For citations:
Sheka E.F. Silicene is a phantom material. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(6):983-1001. https://doi.org/10.17586/2220-8054-2016-7-6-983-1001