Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Phosphors with different morphology, formed under hydrothermal conditions on the basis of ZrO2:Eu3+ nanocrystallites

https://doi.org/10.17586/2220-8054-2019-10-6-654-665

Abstract

Eu3+-doped ZrO2 nanostructures in the form of rods, stars, and hollow spheres were prepared by varying hydrothermal conditions. X-ray diffraction, transmission electron microscopy, ultraviolet-visible diffuse reflection spectroscopy, a low-temperature nitrogen adsorption method, Raman spectroscopy and photoluminescence spectra were used to characterize the polymorph modification, surface and optical properties of the Zr0.98Eu0.02O2 nanophosphors. The Eu3+ content in a zirconia monoclinic lattice, remained constant for all types of obtained nanostructures in order to reveal the morphology influence on the efficiency of electronic excitation energy transfer from the host matrix to photoactive centers. The decrease of the average size of the coherent scattering regions in the series rods → stars → hollow spheres, is associated with increasing the specific surface area values. At that, in the photoluminescence spectrum, the splitting of the sublevels associated with the monoclinic lattice 5D0 → 7F1 disappears.

About the Authors

A. N. Bugrov
Institute of Macromolecular Compounds RAS; Saint Petersburg Electrotechnical University “LETI”
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg; ul. Professora Popova 5, 197376 St. Petersburg



R. Yu. Smyslov
Institute of Macromolecular Compounds RAS; Peter the Great St. Petersburg Polytechnic University
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg; Polytechnicheskaya ul. 29, 195251 St. Petersburg



T. V. Khamova
Grebenshchikov Institute of Silicate Chemistry RAS
Russian Federation

Makarova nab. 2., letter B, 199034 St. Petersburg



D. A. Kirilenko
Ioffe Institute RAS; ITMO University
Russian Federation

Politekhnicheskaya ul. 26, 194021 St. Petersburg; Kronverskii avenue 49, 197101 St. Petersburg



I. A. Rodionov
Institute of Chemistry, Saint Petersburg State University
Russian Federation

Universitetskii prospect 26, Petergof, 198504 St. Petersburg



References

1. Dhoble S.J., Pawade V.B., Swart H.C., Chopra V. Spectroscopy of lanthanide doped oxide materials. Woodhead Publishing, 2019, 480 p.

2. Cesaria M., Di Bartolo B. Nanophosphors-based white light sources. Nanomaterials, 2019, 9 (7), 1048.

3. Gai S., Li C., Yang P., Lin J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chemical Reviews, 2014, 114 (4), P. 2343–2389.

4. Maciel G.S., Rakov N. Photon conversion in lanthanide-doped powder phosphors: concepts and applications. RSC Advances, 2015, 5, P. 17283–17295.

5. Ma C.-G., Brik M.G., et al. Spectroscopic and crystal-field analysis of energy levels of Eu3+ in SnO2 in comparison with ZrO2 and TiO2. Journal of Alloys and Compounds, 2011, 509, P. 3441–3451.

6. Binnemans K. Interpretation of europium (III) spectra. Coordination Chemistry Reviews, 2015, 295, P. 1–45.

7. Nadort A., Zhao J., Goldys E.M. Lanthanide upconversion luminescence at a nanoscale: fundamentals and optical properties. Nanoscale, 2016, 8, P. 13099–13130.

8. Debashrita S., Sagar G., Tuhin S., Venkataramanan M. Design of lanthanide-doped colloidal nanoparticles: Applications as phosphors, sensors and photocatalysts. Langmuir, 2019, 35 (19), P. 6211–6230.

9. Bugrov A.N., Smyslov R.Yu., et al. Soluble and insoluble polymer-inorganic systems based on poly(methyl methacrylate), modified with ZrO2–LnO1.5 (Ln = Eu, Tb) nanoparticles: Comparison of their photoluminescence. Journal of Luminescence, 2019, 207, P. 157–168.

10. Prakashbabu D., Ramalingam H.B., et al. Charge compensation assisted enhancement of photoluminescence in combustion derived Li+ co-doped cubic ZrO2:Eu3+ nanophosphors. Phys. Chem. Chem. Phys., 2016, 18, P. 29447–29457.

11. Soares M.R., Rodrigues J., et al. Prospects on laser processed wide band gap oxides optical materials. Proceedings of SPIE, 2013, 8626, 862607.

12. Bugrov A.N., Smyslov R.Yu., et al. Phase composition and photoluminescence correlations in nanocrystalline ZrO2:Eu3+ phosphors synthesized under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (3), P. 378–388.

13. Tiseanu C., Cojocaru B., et al. Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence. Phys. Chem. Chem. Phys., 2012, 14, P. 12970–12981.

14. Meetei S.D., Singh S.D. Effects of crystal size, structure and quenching on the photoluminescence emission intensity, lifetime and quantum yield of ZrO2:Eu3+ nanocrystals. Journal of Luminescence, 2014, 147, P. 328–335.

15. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P. The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0.98Eu0.02O1.99 nanophosphors. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (2), P. 164–175.

16. De la Rosa E., Diaz-Torres L.A., Salas P., Rodriguez R.A. Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Optical Materials, 2005, 27, P. 1320–1325.

17. Marin R., Sponchia G., et al. Monitoring the t → m martensitic phase transformation by photoluminescence emission in Eu3+-doped zirconia powders. J. Am. Ceram. Soc., 2013, 96 (8), P. 2628–2635.

18. Manjunatha S., Dharmaprakash M.S. Eu3+ ion as a luminescent probe in ZrO2:Gd3+ co-doped nanophosphor. International Scholarly and Scientific Research & Innovation, 2017, 11 (1), P. 56–59.

19. Ikeshita R., Hayakawa T., et al. Novel method to control initial crystallization of Eu3+ doped ZrO2 nanophosphors derived from a Sol Gel route based on HNO3 and their site-selective photoluminescence. Journal of the Ceramic Society of Japan, 2018, 126 (7), P. 551–556.

20. Zhang M., Zuo W., et al. Synthesis and photoluminescence properties of Eu3+-doped ZrO2 hollow spheres. J. Mater. Res., 2015, 30 (24), P. 3740–3745.

21. Bugrov A.N., Rodionov I.A., et al. Photocatalytic activity and luminescent properties of Y, Eu, Tb, Sm and Er-doped ZrO2 nanoparticles obtained by hydrothermal method. Int. J. Nanotechnology, 2016, 13 (1/2/3), P. 147–157.

22. Garcia-Hipolito M., Martinez E., et al. Preparation and characterization of Eu doped zirconia luminescent films synthesized by the pyrosol technique. Journal of Materials Science Letters, 2001, 20, P. 1799–1801.

23. Wang M., Wang X., et al. Preparation and photoluminescence properties of Eu3+-doped ZrO2 nanotube arrays. Ceramics International, 2015, 41 (7).

24. Colbea C., Avram D., et al. Full tetragonal phase stabilization in ZrO2 nanoparticles using wet impregnation: Interplay of host structure, dopant concentration and sensitivity of characterization technique. Nanomaterials, 2018, 8 (12), P. 988–1000.

25. Chen Guo, Peng Wang, et al. Morphology-Controllable Hydrothermal Synthesis of Zirconia with the Assistance of a Rosin-Based Surfactant. Appl. Sci., 2019, 9, 4145.

26. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morpholgy of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4 (6), P. 810–815.

27. Shu Z., Jiao X., Chen D. Synthesis and photocatalytic properties of flower-like zirconia nanostructures. Cryst. Eng. Comm., 2012, 14 (1122).

28. Chen L., Liu Y., Li Y. Preparation and characterization of ZrO2:Eu3+ phosphors. Journal of Alloys and Compounds, 2004, 381, P. 266–271.

29. Sokolova M.P., Smirnov M.A., et al. Structure of composite based on polyheteroarylene matrix and ZrO2 nanostars investigated by quantitative nanomechanical mapping. Polymers, 2017, 9 (7), P. 268.

30. Smith D., et al. Penn State University, University Park, Pennsylvania, USA, ICDD Grant-in-Aid, 1973.

31. Lin F.Q., Dong W.S., et al. In situ source – template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells. Journal of Colloid and Interface Science, 2008, 323, P. 365–371.

32. Hecht H.G. The interpretation of diffuse reflectance spectra. Journal of Research of the National Bureau of Standards A. Physics and Chemistry, 1976, 80A (4), P. 567–583.

33. Heine C., Girgsdies F., et al. The model oxidation catalyst α-V2O5: insights from contactless in situ microwave permittivity and conductivity measurements. Appl. Phys. A, 2013, 112 (2), P. 289–296.

34. Gallino F., Di Valentin C., Pacchioni G. Band gap engineering of bulk ZrO2 by Ti doping. Phys. Chem. Chem. Phys., 2011, 13, P. 17667.

35. Li L., Yang H.K., et al. Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu. Journal of Nanoscience and Nanotechnology, 2011, 11, P. 350–357.

36. Rao G.R., Sahu H.R. XRD and UV-Vis diffuse reflectance analysis of CeO2–ZrO2 solid solutions synthesized by combustion method. Proc. Indian Acad. Sci. (Chem. Sci.), 2001, 113 (5, 6), P. 651–658.

37. Bugrov A.N., Zavialova A.Yu., et al. Luminescence of Eu3+ ions in hybrid polymer-inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence, 2018, 33 (5), P. 837–849.


Review

For citations:


Bugrov A.N., Smyslov R.Yu., Khamova T.V., Kirilenko D.A., Rodionov I.A. Phosphors with different morphology, formed under hydrothermal conditions on the basis of ZrO2:Eu3+ nanocrystallites. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(6):654-665. https://doi.org/10.17586/2220-8054-2019-10-6-654-665

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)