Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Time dependent delta-prime interactions in dimension one

https://doi.org/10.17586/2220-8054-2016-7-2-303-314

Abstract

We solve the Cauchy problem for the Schrӧdinger equation corresponding to the family of Hamiltonians Hγ(t) in L2(R) which describes a δ′-interaction with time-dependent strength 1/γ(t). We prove that the strong solution of such a Cauchy problem exists whenever the map t → γ(t) belongs to the fractional Sobolev space H3/4(R), thus weakening the hypotheses which would be required by the known general abstract results. The solution is expressed in terms of the free evolution and the solution of a Volterra integral equation.

About the Authors

C. Cacciapuoti
DiSAT, Sezione di Matematica, Universit`a dell’Insubria
Italy

via Valleggio 11, 22100 Como



A. Mantile
Laboratoire de Math´ematiques, Universit´e de Reims
France

Moulin de la Housse BP 1039, 51687 Reims



A. Posilicano
DiSAT, Sezione di Matematica, Universit`a dell’Insubria
Italy

via Valleggio 11, 22100 Como



References

1. Gesztesy F. and Holden H. A new class of solvable models in quantum mechanics describing point interactions on the line, J. Phys. A, 1987, 20(15), P. 5157–5177.

2. ˇSeba P. Some remarks on the δ′-interaction in one dimension, Rep. Math. Phys., 1986, 24(1), P. 111–120.

3. Albeverio S., Gesztesy F., Hoegh-Krohn R., and Holden H. Solvable Models in Quantum Mechanics, AMS, 2005. With an appendix of P. Exner.

4. Sayapova M. R. and Yafaev D. R. The evolution operator for time-dependent potentials of zero radius, Boundary value problems of mathematical physics, vol. 159, Part 12, Work collection, Trudy Mat. Inst. Steklov., 1983, P. 167–174.

5. Yafaev D. R. Scattering theory for time-dependent zero-range potentials, Annales de l’IHP Physique th´eorique, 1984, 40(4), P. 343–359.

6. Correggi M., Dell’Antonio G., Figari R., and Mantile A. Ionization for Three Dimensional Time-Dependent Point Interactions, Comm. Math. Phys., 2005, 257(1), P. 169–192.

7. Correggi M. and Dell’Antonio G. Decay of a bound state under a time-periodic perturbation: a toy case, J. Phys. A, 2005, 38(22), P. 4769–4781.

8. Carlone R., Correggi M., and Figari R. Two-dimensional time-dependent point interactions, arXiv:1601.02390 math-ph, 2016, 17 pp.

9. Hmidi T., Mantile A., and Nier F. Time-dependent Delta-interactions for 1D Schr¨odinger Hamiltonians, Math. Phys. Anal. Geom., 2009, 13(1), P. 83–103.

10. Neidhardt H. and Zagrebnov V. A. Linear non-autonomous Cauchy problems and evolution semigroups, Adv. Differential Equations, 2009, 14(3/4), P. 289–340.

11. Adami R., Dell’Antonio G., Figari R., and Teta A. The Cauchy problem for the Schr¨odinger equation in dimension three with concentrated nonlinearity, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 2003, 20(3), P. 477–500.

12. Adami R., Dell’Antonio G., Figari R., and Teta A. Blow-up solutions for the Schr¨odinger equation in dimension three with a concentrated nonlinearity, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 2004, 21(1), P. 121–137.

13. Adami R., Noja D., and Ortoleva C. Orbital and asymptotic stability for standing waves of a nonlinear Schr¨odinger equation with concentrated nonlinearity in dimension three, J. Math. Phys., 2013, 54(1), P. 013501.

14. Adami R. and Teta A. A Simple Model of Concentrated Nonlinearity, Mathematical Results in Quantum Mechanics (Dittrich J., Exner P., and Tater M., eds.), Operator Theory Advances and Applications, Birkh¨auser Basel, January 1999, P. 183–189.

15. Adami R. and Teta A. A class of nonlinear Schr¨odinger equations with concentrated nonlinearity, J. Funct. Anal., 2001, 180(1), P. 148–175.

16. Holmer J. and Liu C., Blow-up for the 1D nonlinear Schr¨odinger equation with point nonlinearity I: Basic theory, arXiv:1510.03491 math.AP, 2015, 22 pp.

17. Dror N. and Malomed B. A. Solitons supported by localized nonlinearities in periodic media, Phys. Rev. A, 2011, 83(3), P. 033828.

18. Hennig D., Tsironis G., Molina M., and Gabriel H. A nonlinear quasiperiodic Kronig-Penney model, Phys. Lett. A, 1994, 190(3-4), P. 259–263.

19. Malomed B. A. and Azbel M. Y. Modulational instability of a wave scattered by a nonlinear center, Phys. Rev. B, 1993, 47(16), P. 10402–10406.

20. Molina M. and Bustamante C. The attractive nonlinear delta-function potential, Am. J. Phys., 2002, 70, P. 67–70.

21. Cacciapuoti C. On the derivation of the Schr¨odinger equation with point-like nonlinearity, Nanonsystems: Phys., Chem., Math, 2015, 6, P. 79–94.

22. Cacciapuoti C., Finco D., Noja D., and Teta A. The NLS Equation in Dimension One with Spatially Concentrated Nonlinearities: the Pointlike Limit, Lett. Math. Phys., 2014, 104(12), P. 1557–1570.

23. Cacciapuoti C., Finco D., Noja D., and Teta A. The point-like limit for a NLS equation with concentrated nonlinearity in dimension three, arXiv:1511.06731 math-ph, 2015, 35 pp.

24. Kisy´nski J. Sur les op´erateurs de Green des problemes de Cauchy abstraits, Studia Mathematica, 1964, 3(23), P. 285–328.

25. Kato T. Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I, 1970, 17(6), P. 241–258.

26. Dell’Antonio G. F., Figari R., and Teta A., A limit evolution problem for time-dependent point interactions, J. Funct. Anal., 1996, 142(1), P. 249–274.

27. Bahouri H., Chemin J.-Y., and Danchin R. Fourier analysis and nonlinear partial differential equations, vol. 343, Springer Science & Business Media, 2011.

28. Duistermaat J. J. and Kolk J. A. Distributions: Theory and Applications, Springer, 2010.

29. Lions J. L. and Magenes E. Non-homogeneous boundary value problems and applications, vol. 1, Springer, Berlin, 1972.

30. Strichartz R. S. Multipliers on fractional Sobolev spaces, J. Math. Mech, 1967, 16(9), P. 1031–1060.

31. Gripenberg G., Londen S. O., and Staffans O., Volterra integral and functional equations, vol. 34, Cambridge University Press, 1990.


Review

For citations:


Cacciapuoti C., Mantile A., Posilicano A. Time dependent delta-prime interactions in dimension one. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(2):303-314. https://doi.org/10.17586/2220-8054-2016-7-2-303-314

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)