Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Steady Stokes flow between confocal semi-ellipses

https://doi.org/10.17586/2220-8054-2016-7-2-324-331

Abstract

Analytical solutions for the Stokes equations in a cavity bounded by two confocal semi-ellipses and two line segments are derived here. The exact solution for the stream function, in the form of a Fourier series, is obtained. Eddy structure is described for different boundary conditions.

About the Authors

I. V. Makeev
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



I. Yu. Popov
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



References

1. Li D. Encyclopedia of Microfluidics and Nanofluidics, 2008 Springer, New York.

2. Rivera J. L. and Starr F. W., Rapid transport of water via carbon nanotube. J. Phys. Chem. C, 2010, 114, P. 3737–3742.

3. Kang W. and Landman U., Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges. Phys. Rev. Lett., 2007, 98, P. 064504/1–4.

4. Chivilikhin S.A., Popov I.Yu., Gusarov V.V., and Svitenkov A.I., Model of fluid flow in a nano-channel. Russian J. Math. Phys., 2007, 15, P. 410–412.

5. Maslov V.P. Superfluidity of classical liquid in a nanotube for even and odd numbers of neutrons in a molecule. Theor. Math. Phys., 2007, 153, P. 1677–1696.

6. Belonenko M.B., Chivilikhin S.A., Gusarov V.V., Popov I.Yu., and Rodygina O.A. Soliton-induced flow in carbon nanotube. Europhys. Lett., 2013, 101, P. 66001/1–3.

7. Popov I.Yu. Statistical derivation of modified hydrodynamic equations for nanotube flows. 2011, Physica Scripta, 83, P. 045601/1–3.

8. Chivilikhin S.A., Gusarov V.V., Popov I.Yu. Flows in nanostructures: hybrid classical-quantum models. Nanosystems: Phys. Chem. Math., 2012, 3(1), P. 7–26.

9. Kononova S.V., Korytkova E.N., Romashkova K.A., Kuznetsov Yu.P., Gofman I.V., Svetlichnyi V.M., Gusarov V.V. Nanocomposite on the basis of amide imide resin with hydrosylicate nanoparticles of different morphology. J. Appl. Chem., 2007, 80(12), P. 2064–2070.

10. Gusarov V.V. and Popov I.Yu. Flows in two-dimensional non-autonomous phases in polycrystalline system. Nuovo Cimento D,1996, 18(7), P. 799–805.

11. Ismail-Zadeh A. and Tackley P., Computational Methods for Geodynamics, 2010, Cambridge University Press, Cambridge.

12. G¨urcan F. Streamline Topologies in Stokes Flow Within Lid-Driven Cavities. Theoretical and Computational Fluid Dynamics, 2003, 17(1), P. 19–30.

13. G¨urcan F., Gaskell P.H., Savage M.D., and Wilson M.C.T. Eddy genesis and transformation of Stokes flow in a double-lid driven cavity. J. of Mechanical Engineering Science, 2003, 217,P. 353–363.

14. Shankar P.N. The eddy structure in Stokes flow in a cavity. J. Fluid Mechanics, 1993, 250, P. 371–383.

15. Meleshko V.V. Steady Stokes flow in a rectangular cavity. Proc. R. Soc. Lond, 1996, A. 452, P. 1999–2022.

16. van der Woude D., Clercx H.J.H., van Heijst G.J.F., and Meleshko V.V. Stokes flow in a rectangular cavity by rotlet forcing. Phys. Fluids, 2007, 19(8), P. 083602.

17. Popov I.Yu. Operator extensions theory and eddies in creeping flow. Phys. Scr., 1993, 47, P. 682–686.

18. Popov I.Yu. Stokeslet and the operator extensions theory. Rev. Mat. Univ., Compl. Madrid, 1996, 9(1), P. 235–258.

19. Sturges L. D. Stokes flow in a two-dimensional cavity with moving end walls. Phys. Fluids, 1986, 29(5), P. 1731–1734.

20. Krasnopolskaya N.S., Meleshko V.V., Peters G.W.M., Meijer H.E.Y., Steady Stokes flow in an annular cavity, Q. J. Mech. Appl. Math., 1996, 49(4), P. 593–619.

21. Hackborn W. W. An analysis of a Stokes flow in an annular region. Canadian Applied Mathematics Quarterly, 2000, 8, P. 171–183.

22. Murad A, Sen. Stokes Flow between Two Cylinders. Journal of Bangladesh Academy of Sciences, 2012, 36(1), P. 123–135.

23. Gaskell P.H., Savage M.D., and Wilson M. Stokes flow in a half-filled annulus between rotating coaxial cylinders. J. Fluid Mechanics, 1997, 337, P. 263–282.

24. Blinova I.V. Model of non-axisymmetric flow in nanotube. Nanosystems: Phys. Chem. Math., 2013, 4(3), P. 320–323.

25. Gugel Yu.V., Popov I.Yu., and Popova S.L. Hydrotron: creep and slip. Fluid Dyn. Res., 1996, 18, P. 199–210.

26. Saatdjian E., Midoux N., and Andr´e. On the solution of Stokes’ equations between confocal ellipses. Phys. Fluids, 1994, 6, P. 3833.

27. Popov I.Yu., and Makeev I.V. A benchmark solution for 2-D Stokes flow over cavity. Z. Angew. Math. Phys., 2014, 65, P. 339–348.

28. Moffatt H.K. Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 1964, 18, P. 1–18.

29. Moffatt H.K. Viscous eddies near a sharp corner. Arch. Mech. Stosowanej, 1964, 16, P. 365–372.

30. Blinova I.V., Kyz’yurova K.N., and Popov I.Yu. Stokes flow driven by a Stokeslet in a cone. Acta Mechanica, 2014, 225, P. 3115–3121.

31. Gerya T. Introduction to Numerical Geodynamic Modelling, 2010, Cambridge University Press, Cambridge.


Review

For citations:


Makeev I.V., Popov I.Yu. Steady Stokes flow between confocal semi-ellipses. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(2):324-331. https://doi.org/10.17586/2220-8054-2016-7-2-324-331

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)