Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Light scattering of Laguerre-Gaussian beams: near-field structures and symmetries

https://doi.org/10.17586/2220-8054-2016-7-2-349-370

Abstract

We apply the method of far-field matching to remodel laser beams and study light scattering from spherical particles illuminated by a Laguerre-Gaussian (LG) light beam. The optical field in the near-field region is analyzed for purely azimuthal LG beams characterized by a nonzero azimuthal mode number mLG. The morphology of photonic nanojets is shown to significantly vary, depending the mode number and the scatterer’s characteristics. The cases of negative index metamaterial and metallic Mie scatterers are discussed. We also discuss the symmetry properties of laser beams and related results for the optical forces. The near-field structure of optical vortices associated with the components of the electric field, being highly sensitive to the mode number, is found to be determined by the twofold rotational symmetry.

About the Authors

A. D. Kiselev
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



D. O. Plutenko
Institute of Physics of National Academy of Sciences of Ukraine; Physical Engineering Teaching Research Center of National Academy of Sciences of Ukraine
Ukraine

Kiev



References

1. Mie G. Beitr¨age zur Optik tr¨uber Medien, speziell kolloidaler Metall¨osungen. Ann. Phys., Leipzig, 1908, 25, P. 377–445.

2. Newton R. G. Scattering Theory of Waves and Particles. 2 edition. Heidelberg, Springer, 1982, 745 p.

3. Tsang L., Kong J. A., Ding K.-H. Scattering of Electromagnetic Waves. Theories and Applications. NY : Wiley–Interscience Pub, 2000. Vol. 1 of Wiley Series in Remote Sensing. 426 p.

4. Mishchenko M. I., Travis L. D., Lacis A. A. Scattering, Absorption and Emission of Light by Small Particles. NY : Cambridge University Press, 2004, 448 p.

5. Gouesbet G., Gr´ehan G. Generalized Lorenz–Mie theories. Berlin, Springer, 2011, 310 p.

6. Mishchenko M. I., Travis L. D., Mackowski D. W. T–matrix computations of light scattering by nonspherical particles: a review. J. of Quant. Spectr., & Radiat. Transf., 1996, 55, P. 535–575.

7. Light Scattering by Nonspherical Particles: Theory, Measurements and Applications / Ed. by M. I. Mishchenko, J. W. Hovenier, L. D. Travis. New York, Academic Press, 2000.

8. Roth J., Digman M. J. Scattering and extinction cross sections for a spherical particle coated with an oriented molecular layer. J. Opt. Soc. Am., 1973, 63, P. 308–311.

9. Kiselev A. D., Reshetnyak V. Y., Sluckin T. J. Influence of the optical axis distribution in the anisotropic layer surrounding a spherical particle on the scattering of light. Opt. Spectrosc., 2000, 89(6), P. 907–913.

10. Kiselev A. D., Reshetnyak V. Y., Sluckin T. J. Light scattering by optically anisotropic scatterers: T-matrix theory for radial and uniform anisotropies. Phys. Rev. E, 2002, 65(5), P. 056609.

11. Geng Y.-L., Wu X.-B., Li L.-W., Guan B.-R. Mie scattering by a uniaxial anisotropic sphere. Phys. Rev. E, 2004, 70, P. 056609.

12. Novitsky A., Barkovsky L. Matrix approach for light scattering from a multilayered rotationally symmetric bianisotropic sphere. Phys. Rev. A, 2008, 77, P. 033849.

13. Chengwei Qiu, Lei Gao, John D. Joannopoulos, Marin Soljaˇci´c. Light scattering from anisotropic particles: propagation, localization and nonlinearity. Laser & Photon. Rev., 2010, 4(2), P. 268–282.

14. Grehan G., Maheu B., Gouesbet G. Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation. Appl. Opt., 1986, 25(19), P. 3539–3548.

15. Gouesbet G., Maheu B., Gr´ehan G. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J. Opt. Soc. Am. A, 1988, 5(9), P. 1427–1443.

16. Barton J. P., Alexander D. R., Schaub S. A. Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam. J. Appl. Phys., 1988, 64(4), P. 1632–1639.

17. Barton J. P., Alexander D. R., Schaub S. A. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys., 1989, 66(10), P. 4594–4602.

18. Schaub S. A., Alexander D. R., Barton J. P. Glare spot image calculations for a spherical particle illuminated by a tightly focused beam. J. Opt. Soc. Am. A, 1992, 9(2), P. 316–330.

19. Lock J. A., Gouesbet G. Generalized Lorenz-Mie theory and applications. J. of Quant. Spectr. & Radiat. Transf., 2009, 110, P. 800–807.

20. Gouesbet G., Lock J. A., Gr´ehan G. Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review. J. of Quant. Spectr. & Radiat. Transf., 2011, 112, P. 1–27.

21. Lax M., Louisell W. H., McKnight W. B. From Maxwell to paraxial wave optics. Phys. Rev. A, 1975, 11(4), P. 1365–1370.

22. Davis L. W. Theory of electromagnetic waves. Phys. Rev. A, 1979, 19, P. 1177–1179.

23. Nieminen T. A., Rubinsztein-Dunlop H., Heckenberg N. R. Multipole expansion of strongly focussed laser beams. J. of Quant. Spectr. & Radiat. Transf., 2003, 79-80, P. 1005–1017.

24. Bareil P. B., Sheng Y. Modeling highly focused laser beam in optical tweezers with the vector Gaussian beam in the T-matrix method. J. Opt. Soc. Am. A, 2013, 30(1), P. 1–6.

25. Hoang T. X., Chen X., Sheppard C. J. R. Multipole theory for tight focusing of polarized light, including radially polarized and other special cases. J. Opt. Soc. Am. A, 2012, 29(1), P. 32–43.

26. Barnett S. M., Allen L. Orbital angular momentum and nonparaxial light beams. Opt. Commun., 1994, 110(5-6), P. 670–678.

27. Duan K., Wang B., L¨u B. Propagation of Hermite-Gaussian and Laguerre-Gaussian beams beyond the paraxial approximation. J. Opt. Soc. Am. A, 2005, 22(9), P. 1976–1980.

28. Van De Nes A. S., Pereira S. F., Braat J. J. M. On the conservation of fundamental optical quantities in non-paraxial imaging systems. Journal of Modern Optics, 2006, 53(5-6), P. 677–687.

29. Zhou G. Analytical vectorial structure of Laguerre–Gaussian beam in the far field. Opt. Lett., 2006, 31(17), P. 2616.

30. Zhou G. Propagation of a vectorial Laguerre-Gaussian beam beyond the paraxial approximation. Optics & Laser Technology, 2008, 40(7), P. 930–935.

31. van de Nes A. S., T¨or¨ok P. Rigorous analysis of spheres in Gauss-Laguerre beams. Opt. Express, 2007, 15(20), P. 13360–13374.

32. Yuesong Jiang, Yuwei Shao, Xiaosheng Qu et al. Scattering of a focused Laguerre–Gaussian beam by a spheroidal particle. J. Opt., 2012, 14(12), P. 125709.

33. Desyatnikov A. S., Kivshar Y. S., Torner L. Optical vortices and vortex solitons. Progress in Optics / Ed. by E. Wolf. Amsterdam, North-Holland, 2005. Vol. 47. P. 291–391.

34. Optical Angular Momentum / Ed. by L. Allen, S. M. Barnett, M. J. Padgett. London, Taylor & Francis, 2003.

35. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces / Ed. by David L. Andrews. Amsterdam, Academic Press, 2008. 342 p.

36. Simpson S. H., Hanna S. Rotation of absorbing spheres in Laguerre–Gaussian beams. J. Opt. Soc. Am. A, 2009, 26(1), P. 173–183.

37. Simpson S. H., Hanna S. Orbital motion of optically trapped particles in Laguerre–Gaussian beams. J. Opt. Soc. Am. A, 2010, 27(9), P. 2061–2071.

38. Kiselev A. D., Plutenko D. O. Mie scattering of Laguerre-Gaussian beams: Photonic nanojets and near-field optical vortices. Phys. Rev. A, 2014, 89, P. 043803. http://dx.doi.org/10.1103/PhysRevA.89.04380

39. A. Heifetz, Soon-Cheol Kong, A. V. Sahakian et al. Photonic Nanojets. J. Comput. Theor. Nanosci., 2009, 12(7), P. 1214–1220.

40. Chen Z., Taflove A., Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible light ultramicroscopy technique. Opt. Express, 2004, 12(7), P. 1214–1220.

41. Xu Li, Zhigang Chen, Allen Taflove, Vadim Backman. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt. Express, 2005, 13(2), P. 526–533.

42. Biedenharn L. C., Louck J. D. Angular Momentum in Quantum Physics: Theory and Application. Reading, Massachusetts, Addison–Wesley, 1981. Vol. 8 of Encyclopedia of Mathematics and its Applications. 717 p.

43. Varshalovich D. A., Moskalev A. N., Khersonskii V. K. Quantum theory of angular momentum: Irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj symbols. Singapore, World Scientific Publishing Co., 1988. 514 p.

44. Jackson J. D. Classical Electrodynamics, 3rd edition. New York, Wiley, 1999.

45. Sarkar D., Halas N. J. General vector basis function solution of Maxwells equations. Phys. Rev. E, 1997, 56(1), P. 1102–1112.

46. Handbook of Mathematical Functions / Ed. by M. Abramowitz, I. A. Stegun. New York, Dover, 1972.

47. Kiselev A. D., Reshetnyak V. Y., Sluckin T. J. T-matrix theory of light scattering by uniformly anisotropic scatterers. Mol. Cryst. Liq. Cryst., 2002, 375, P. 373–386.

48. Stout B., Nevi´ere M., Popov E. Mie scattering by an anisotropic object. Part I. Homogeneous sphere. J. Opt. Soc. Am. A, 2006, 23 (5), P. 1111–1123.

49. Gradshteyn I. S., Ryzhik I. M. Table of Integrals, Series, and Products. New York, Academic, 1980.

50. Sherman G. C., Stamnes J. J., Lalor E. Asymptotic approximations to angular–spectrum representations. J. Math. Phys., 1976, 17(5), P. 760–776.

51. Simpson S. H., Hanna S. First-order nonconservative motion of optically trapped nonspherical particles. Phys. Rev. E, 2010, 82, P. 031141.

52. Rury A. S., Freeling R. Mie scattering of purely azimuthal Laguerre-Gauss beams: Angular-momentum-induced transparency. Phys. Rev. A, 2012, 86, P. 053830.

53. Lecler S., Takakura Y., Meyrueis P. Properties of a three-dimensional photonic jet. Opt. Lett., 2005, 30(19), P. 2641–2643.

54. Devilez A., Stout B., Bonod N., Popov E. Spectral analysis of three-dimensional photonic jets. Opt. Express, 2008, 16(18), P. 14200–14212.

55. Geints Y. E., Zemlyanov A. A., Panina E. K. Control over parameters of photonic nanojets of dielectric microspheres. Opt. Commun., 2010, 283(23), P. 4775–4781.

56. Devilez A., Bonod N., Wegner J., et al. Three-dimensional subwavelength confinement of light with dielectric microspheres. Opt. Express, 2009, 17(4), P. 2089–2094.

57. Myun-Sik Kim, Toralf Scharf, Stefan M¨uhlig et al. Engineering photonic nanojets. Opt. Express, 2011, 19(11), P. 10206–10220.

58. Solymar L., Shamonina E. Waves in Metamaterials. NY, Oxford University Press, 2009. 385 p.

59. Cai W., Shalaev V. Optical Metamaterials. Fundamentals and Applications, NY, Springer, 2010. 200 p.

60. Kivshar Y. S. From metamaterials to metasurfaces and metadevices. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(3), P. 346–352.

61. Pravdin K. V., Popov I. Y. Photonic crystal with negative index material layers. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(5), P. 626–643.

62. Veselago V. G. The electrodynamics of substances with simultaneously negative values of ϵ and µ. Soviet Physics Uspekhi, 1968, 10(4), P. 509–514.


Review

For citations:


Kiselev A.D., Plutenko D.O. Light scattering of Laguerre-Gaussian beams: near-field structures and symmetries. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(2):349-370. https://doi.org/10.17586/2220-8054-2016-7-2-349-370

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)