Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Development of the orbital-free approach for hetero-atomic systems

https://doi.org/10.17586/2220-8054-2016-7-6-1010-1016

Abstract

The key problem of the orbital-free approach is calculation of kinetic energy, especially for hetero-atomic systems. In this work, we used the mono-atomic functionals of kinetic energy to construct the kinetic functionals of complicated systems. We constructed some atomic weights associated with densities of single atoms and then calculated kinetic functions for some atomic complexes. For the examples of SiC, SiAl, AlC, SiO and CO dimers we have demonstrated possibility of our approach to find equilibrium interatomic distances and dissociation energies for hetero-atomic systems.

About the Authors

V. G. Zavodinsky
Institute for Material Science
Russian Federation

Khabarovsk, 680042, 153 Tikhookeanskaya str.



O. A. Gorkusha
Institute of Applied Mathematics
Russian Federation

Khabarovsk, 680000, 54 Dzerzhinskogo str.



References

1. Kohn W., Sham J.L. Self-Consistent Equations including Exchange and Correlation Effects. Phys. Rev., 1965, 140, P. A1133–A1138.

2. Konovalenko I.S., Zolnikov K.P., Psakhie S.G. Molecular dynamics investigation of deformation response of thin-film metallic nanostructures under heating. Nanosystems: Physics, Chemistry, Mathematics, 2011, 2(2), P. 76–83.

3. Smolin A.Yu., Roman N.V., Zolnikov K.P., Psakhie S.G., Kedrinskii V.K. Simulation of structural transformations in copper nanoparticles under collision. Nanosystems: Physics, Chemistry, Mathematics, 2011, 2(2), P. 98–101.

4. Hohenberg H., Kohn W. Inhomogeneous Electron Gas. Physical Review, 1964, 136, P. B864–B871.

5. Hung L., Carter E.A. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics. Chemical Physics Letters, 2009, 475, P. 163–170.

6. Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory. Progress in Theoretical Chemistry and Physics, Kluwer, Dordrecht, 2000, 117 p.

7. Huajie Chen, Aihui Zhou. Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods and Applications, 2008, 1, P. 1–28.

8. Baojing Zhou, Ligneres V.L., Carter E.A. Improving the orbital-free density functional theory description of covalent materials. Journal Chemical Physics, 2005, 122, P. 044103–044113.

9. Karasiev V.V., Trickey S.B. Issues and challenges in orbital-free density functional calculations. Computational Physics Communications, 2012, 183, P. 2519–2527.

10. Karasiev V.V., Chakraborty D., Shukruto O.A., Trickey S.B. Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Physical Review B, 88, P. 161108–161113(R).

11. Wesolowski T.A. Approximating the kinetic energy functional Ts[ρ]: lessons from four-electron systems. Molecular Physics, 2005, 103, P. 1165–1167.

12. Junchao Xia, Chen Huang, Ilgyou Shin, Carter E.A. Can orbital-free density functional theory simulate molecules? The Journal of Chemical Physics, 2012, 136, P. 084102(13).

13. Lehtomaki J., Makkonen I., Caro M.A., Harju A. and Lopez-Acevedo O. Orbital-free density functional theory implementation with the ¨ projector augmented wave method. Journal Chemical Physics, 2014, 141, P. 234102(7).

14. Zavodinsky V.G., Gorkusha O.A. A practical way to develop the orbital-free density functional calculations. Physical Science International Journal, 2014, 4(6), P. 880–891.

15. Zavodinsky V.G., Gorkusha O.A. Quantum-Mechanical Modeling without Wave Functions. Physics of the Solid States, 2014, 56(11), P. 2329–2335.

16. Zavodinsky V.G., Gorkusha O.A. New Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, 2015, 5, P. 39–46.

17. Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computational Physics Communications, 1999,119, P. 67–98.

18. Perdew J.P., Zunger A. Self-interaction correction to density functional approximation for many-electron systems. Physical Review B, 1981, 23, P. 5048–5079.

19. Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method. Physical Review Letters, 1980, 45, P. 566–569.

20. Mukhtarov A.P., Normurodov A.B., Sulaymonov N.T. Umarova F.T. Charge States of Bare Silicon Clusters up to Si8 by Non-Conventional Tight-Binding Method. Journal of nano- and electronic physics, 2015, 7, P. 01012(7).

21. Raghavachari K., Logovinsky V. Structure and bonding in small silicon clusters. Phys. Rev. Lett., 1985, 55, P. 2853–2856.

22. Tomanek D., Schluter M.A. Structure and bonding of small semiconductor clusters. Phys Rev B, 1987, 36, P. 1208–1217.

23. Mart´ınez A., Vela A. Stability of charged aluminum clusters. Physical Review B, 1994, 49, P. 17464(4).

24. Kumar V., Sundararajan V. Ab initio molecular-dynamics studies of doped magic clusters and their interaction with atoms, Physical Review B, 1998, 57, P. 4939–4942.

25. Herzberg G. Spectra of Diatomic Molecules. Van Nostrand, New York, 1950.

26. Chelikowsky J.R., Chou M.Y. Ab initio pseudopotential-local density description of the structural properties of small carbon clusters. Physical Review B, 37, P. 6504–6507.

27. Fougere P.F., Nesbet R.K. Electronic Structure of C2. J. Chem. Phys., 1966, 44, P. 285–297.

28. Huber K.P., Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. Reinhold, New York, 1979.

29. Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Computational Physics Communications, 1997, 107, P. 187–205.

30. Patrick A.D., Xiao Dong, Allison T.C., Blaisten-Barojas E. Silicon carbide nanostructures: A tight binding approach. Journal of Chemical Physics, 2009, 130, P. 244704. http://dx.doi.org/10.1063/1.3157282

31. Deskbook of the Chemist. Moscow, Chemistry, 1982, P. 336–341. http://www.chemway.ru/bd_chem/tbl_mol/w_tbl_r_m_08.php.

32. Andersen T., Haugen H.K., Hotop H. Binding energies in atomic negative ions: III. J. Phys. Chem. Ref., 1999, 28, P. 1511–1534.


Review

For citations:


Zavodinsky V.G., Gorkusha O.A. Development of the orbital-free approach for hetero-atomic systems. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(6):1010-1016. https://doi.org/10.17586/2220-8054-2016-7-6-1010-1016

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)