Formation and structural transformations of nanoparticles in the TiO2–H2O system
https://doi.org/10.17586/2220-8054-2016-7-6-1031-1049
Abstract
Results thermodynamic analysis of processes in the TiO2 – H2O system in a wide range of variation of parameters determine the regions of sustainable existence of titanium dioxide in the form of rutile and anatase modification. The results of thermodynamic prediction on the possibility and conditions of sustainable existence of TiO2 with the rutile structure have been confirmed in experiments.
About the Author
O. V. AlmjashevaRussian Federation
ul. Professora Popova 5, 197376 St. Petersburg
References
1. Chemseddine A., Moritz T. Nanostructuring titania: control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem., 1999, 2, P. 235–245.
2. Denisova T.A. Status of proton groups sorbents based oxyhydrated, geteropolimetallatnyh and tsianoferratnyh phases. Thesis for the degree of Doctor of Science. Institute of solid state chemistry of the Ural Branch of the Russian Academy of Sciences. Ekaterinburg, 2009. (in Russian)
3. Pletnev R.N., Ivakin A.A., Kleshchev D.G., Denisova T.A., Burmistrov V.A. Hydrated oxides of group IV and V.M. Nauka, 1986, 186 p. (in Russian).
4. Osborn E.F. System H2O-TiO2: conversion of anatase to rutile in the presence of water. J. Am. Ceram. Soc., 1953, 36(5), P. 147–151.
5. Dachille F., Roy R. A new high pressure form of titanium dioxide. Am. Ceram. Soc. Bull, 1962, 41, P. 225.
6. Simons P.Y., Dachille F. The structure of TiO2II, a high pressure phase of TiO2. Acta Crystallogr., 1967, 23 (Pt. 2), P. 334–335.
7. Bendeliany N.A., Popova S.V., Vereschagin L.F. A new modification of titanium dioxide stable at high pressure. Geochem. Int., 1966, 5, P. 387–391.
8. McQueen R.G., Jamieson J.C. Marsh S.P. Shock wave compression and X-ray studies of titanium dioxide. Science, 1967, 155(3768), P. 1401–1404.
9. Carli P.S, Linde R.K. Residual effects of shock waves in rutile. Meteorit. Soc., 30-th Ann Meet., Mofett Field, Calif, October, 1967.
10. Vahldiek F.W. Phase transitions of titanium dioxide under various pressures. J. Less Common Metals, 1966, 11, P. 99–110.
11. White W.B., Dachille F. Roy R High pressure high temperature polymorphism of the oxides of lead. J. Am. Ceram. Soc., 1961, 44, P. 170–175.
12. Azzaria L., Dachille F. High pressure polymorphism of manganous fluoride. J. Phys. Chem., 1961, 65, P. 889–890.
13. Dachille F., Simons P.Y, Roy R. Pressure-temperature studies of anatase, brookite, rutile and TiO2-II. Am. Mineralogist, 1968, 53, P. 1929–1938.
14. El-Akkad T.M. Effect of thermal dehydration on surface characteristics of titania gel. Thermochim. cta., 1980, 37(3), P. 269–277.
15. Hakonov A.I., Kontorovich S.I., Shchukin E.D. Thermal aging study “titanic acid” in the mother liquor. Izvestiya Academy Nauk USSR. Neorganicheskie materialy, 1974, 10(11), P. 2095–2096 (in Russian).
16. Kolen’ko Yu.V., Burukhin A.A., Churagulov B.R., Oleynikov N.N. Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions. Mater. Lett., 2003, 57, P. 1124–1129.
17. Zhang S., Peng L.M., Chen Q., Du G.H., Dawson G., Zhou W.Z. Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett., 2003, 91(25), P. 256103.
18. Iorish V.S., Belov G.V. IVTANTHERMO/WIN - database and software for high temperature chemical processes modeling. 9-th Int. Conf. on High Temperature Materials Chemistry: Proceedings.- Pennsylvania (USA), 1997, P. 42.
19. Gusarov V.V. Fast Solid-Phase Chemical Reactions. Russ. J. Gen. Chem., 1997, 67(12), P. 1846–1851.
20. Gusarov V.V. The thermal effect of melting in polycrystalline systems. Thermochim. Acta, 1995, 256(2), P. 467–472.
21. Karapetyanc M.H. Methods for calculating the comparative physicochemical properties. .: Nauka, 1965. (in Russia)
22. Almjasheva O.V. Hydrothermal synthesis, structure and properties of crystals and nanocomposites based on the system ZrO2-Al2O3-SiO2. Thesis for the degree of PhD. Saint-Peterburg, 2007. (in Russian)
23. Thermal constants of substances. Directory of 10 issues (Vol. VII). ed. Acad. VP Glushko. M., 1974. (in Russian)
24. Hishman M.W., Benson S.W. J. Phys. Chem., 1987, 91(5), P. 5998–6009.
25. Kumok V.N. Direct and inverse problems of chemical thermodynamics. Novosibirsk: Nauka, 1987, P. 108–128. (in Russian)
26. Reznitsky L.A., Filippova S.E. The enthalpies of crystallization of the amorphous zirconia and solid solutions with M2O3 (M-Y, Sc, Pr, Nd, Eu, Tb, Yb). Izvestiya Academy Nauk USSR. Neorganicheskie materialy, 1991, 27(9), P. 1841–1844. (in Russian)
27. Reznitsky L.A. Chemical bonding and converting oxides. M.: MSU, 1978, 168 p. (in Russian)
28. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Physics, Chemistry, Mathematics. 2014, 5(3), P. 405–417.
29. Moinov S.G., Reznichenko V.A. Problemy mettalurgii titania, 1967, Moscow, USSR.
30. Brace W.F., Walsh J.B. Some direct measurements of the surface energy of quartz and orthoclase. Am. Mineralogist, 1962, 47, P. 1111– 1122.
31. Terwilliger C.D., Chiang, Y. Measurements of excess enthalpy in ultrafine-grained titanium dioxide. J. Am. Ceram. Soc., 1995, 78, P. 2045–2055.
32. Gribb A.A., Banfield J.F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineralogist, 1997. 82, P. 717–728.
33. Barnard A.S., Zapol P., Curtiss L.A. Modeling the morphology and phase stability of TiO2 nanocrystals in water. J. Chem. Theory Comput., 2005, 1, P. 107–116.
34. Zhang H., Banfield J.F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem., 1998, 8(9), P. 2073–2076.
35. Barnard A.S., Zapol P. Curtiss L.A. Modeling the morphology and phase stability of TiO2 nanocrystal in water. J. Chem. Theory Comput., 2005, 1, P. 107–116.
36. Hoang V.V. The glass transition and thermodynamics of liquid and amorphous TiO2 nanoparticles. Nanotechnology, 2008, 19(10), P. 105706.
37. Tolman R.C. The effect of droplet size on surface tension. J. Chem. Phys., 1949, 17(3), P. 333.
38. Phasengleichgewichte und grenzflachenerscheinungen by A.I. Rusanov, German edition by W. Schirmer, Akademie-Verlag, Berlin, 1978, ¨ 465 p.
39. Samsonov V.M., Bazulev A.N., Sdobnyakov N.Yu. Rusanov’s linear formula for the surface tension of small objects. Dokl. Phys. Chem., 2003, 389(1-3), P. 83–85.
40. NIST-JANAF Thermochemical Tables. http://kinetics.nist.gov/janaf/.
41. Ranade M.R., Navrotsky A., Zhang H.Z., Banfild J.F., Elder S.H., Zaban A. Borse P.H., Kulkarni S.K., Doran G.S., Witfield H.J. Energetic of nanocrystalline TiO2. PNAS, 2002, 99(2), P. 6476–6481.
42. Rao C.N.R. Kinetics and thermodynamics of the crystal structure transformation of spectroscopically pure anatase to rutile. Can. J. Chem., 1961, 39, P. 498–500.
43. Mitsuhashi T., Kleppa O.J. Transformation enthalpies of the TiO2 polymorphs. J. Am. Ceram. Soc., 1979, 62(7-8), P. 356–357.
44. Navrotsky A., Kleppa O.J. Enthalpy of the anatase - rutile transformation. J. Am. Ceram. Soc., 1967, 50(11), 626 p.
45. Margrave J.L., Kybett B.D. Tech.Rep. No AFMO-TR-65, 1965, 123 p.
46. Robie R.A., Waldum D.R. Thermodynamic properties of mineral and related substances at 298.15 ◦K(25.0 ◦C) and one atmosphere (1.013 bars) pressure and at higher temperature. U.S. Geol. Surv. Bull., 1968, 1259, 256 p.
47. Cammarata R.C., Sieradzki K. Surface and Interface Stresses. Annu. Rev. Mater. Sci., 1994, 24, P. 215–234.
48. Gusarov V.V., Almjasheva O.V. The role of non-autonomous state of matter in the formation of structure and properties of nanomaterials. Chapter 13 in the book Nanomaterials: properties and promising applications. Ed A.B. Yaroslavtsev. Scientific World Publishing House, Moscow, 2014, P. 378–403. (in Russian)
49. Vasilevskay A.K., Almjasheva O.V., Gusarov V.V. Peculiarities of structural transformations in zirconia nanocrystals. Journal of Nanoparticle Research, 2016, 18(7), P. 188.
50. Pozhidaeva O.V., Korytkova E.N., Romanov D.P., Gusarov V.V. Formation of ZrO2 nanocrystals in hydrothermal media of various chemical compositions. Russ. J. Gen. Chem., 2002, 72(6), P. 849–853.
51. Sharikov F.Yu., Almjasheva O.V., Gusarov V.V. Thermal analysis of formation of ZrO2 nanoparticles under hydrothermal conditions. Russ. J. Inorg. Chem., 51(10), P. 1538–1542.
52. Gusarov V.V., Malkov A.A., Malygin A.A. Suvorov S.A. Aluminum titanate formation in compositions with a high level of spatial and structural coupling components. Russ. J. Gen. Chem., 1994, 64(4), P. 554.
53. Al’myasheva O.V., Gusarov V.V. Nucleation in media in which nanoparticles of another phase are distributed. Dokl. Phys. Chem., 2009, 424(2), P. 43–45.
54. Al’myasheva O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russ. J. Gen. Chem., 2010, 80(3), P. 385–390.
Review
For citations:
Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2–H2O system. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(6):1031-1049. https://doi.org/10.17586/2220-8054-2016-7-6-1031-1049