Successive ionic layer deposition of Fe3O4@HxMoO4·nH2O composite nanolayers and their superparamagnetic properties
https://doi.org/10.17586/2220-8054-2016-7-6-1050-1054
Abstract
The Fe3O4@HxMoO4·nH2O nanolayers were synthesized on the solid surface for the first time by Successive Ionic Layer Deposition (SILD) method with using an aqueous Fe3O4 suspensions and (NH4)2MoO4 solutions. The obtained nanolayers were investigated by XRD, SEM, EDX, FTIR spectroscopy and magnetization measurement techniques. SEM images showed that the nanolayers formed by nanoparticles of size approximately 15–20 nm. The synthesized nanolayers exhibited superparamagnetic properties with the saturation magnetization value of 55 emu/g.
About the Authors
L. I. KukloRussian Federation
26 University Pr., St. Peterhof, Saint Petersburg, 198504
V. P. Tolstoy
Russian Federation
26 University Pr., St. Peterhof, Saint Petersburg, 198504
References
1. Lomanova N.A., Pleshakov I.V., Volkov M.P., Gusarov V.V. Magnetic properties of Aurivillius phases Bim+1Fem−3Ti3O3m+3 with m = 5.5, 7, 8. Materials Science and Engineering: B, 2016, 214, P. 51–56.
2. Lomanova N.A., Gusarov V.V. Influence of synthesis temperature on BiFeO3 nanoparticle formation. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4(5), P. 696–705.
3. Almjasheva O.V., Gusarov V.V. Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89, P. 851–855.
4. Popkov V.I., Almjasheva O.V. Formation mechanism of YFeO3 nanoparticle under the hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(5), P. 703–708.
5. Tugova E.A., Zvereva I.A. Formation mechanism of GdFeO3 nanoparticles under the hydrothermal conditions. Nanosystems: physics, chemistry, mathematics, 2013, 4(6), P. 851–856.
6. Zherebtsov D.A., Mirasov V.Sh., Kleschev D.G., Polyakov E.V. Nanodisperse oxide compounds of iron formed in the FeSO4–KOH–H2O– H2O2 system (4.0 pH 13.0). Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(4), P. 593–604.
7. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special Features of Formation of Nanocrystalline BiFeO3 via the GlycineNitrate Combustion Method. Russian Journal of General Chemistry, 2016, 86(10), P. 2256–2262.
8. Su Hong-Ying, Wu Chang-Qiang, Li Dan-Yang, and Ai Hua. Self-assembled superparamagnetic nanoparticles as MRI contrast agents. – A review. Chin. Phys. B, 2015, 24, P. 127506.
9. Haining Cao, Jiang He, Li Deng, Xiaoqing Gao. Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane coreshell nanoparticles via layer-by-layer method. Applied Surface Science, 2009, 255, P. 7974–7980.
10. Liqin Xie, Shaohua Ma, Qi Yang, Fang Lan, Yao Wu and Zhongwei Gu. Double-sided coordination assembly: superparamagnetic composite microspheres with layer-by-layer structure for protein separation. RSC Adv., 2014, 4, P. 1055–1061.
11. Yong Seok Kim, Ui Seok Chung, Jung Hyun Kim, Byoung Wook Choi, Won-Gun Koh, and Woo-Dong Jang. Fabrication of Multifunctional Layer-by-Layer Nanocapsules toward the Design of Theragnostic Nanoplatform. Biomacromolecules, 2014, 15, P. 1382–1389.
12. Bin Sun, Yang Zhang, Ke-Jun Gu, Qun-Dong Shen, Yan Yang, and Heng Song. Layer-by-Layer Assembly of Conjugated Polyelectrolytes on Magnetic Nanoparticle Surfaces. Langmuir, 2009, 25, P. 5969–5973.
13. Hua Ai. Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Advanced Drug Delivery Reviews, 2011, 63, P. 772– 788.
14. Bogdanova L.P., Tolstoi V.P., Aleskovskii V.B. Synthesis and properties of multilayer chromate films on the surface of carbon steel. Protection of Metals (English translation of Zaschita Metallov). 1991, 26, P. 375–377.
15. Gulina L.B., Tolstoi V.P., Tolstobrov E.V. Agx-SnO2 nanocomposite layers synthesized by ionic layer deposition onto silica surface. Russian Journal of Applied Chemistry, 2010, 83, P. 1525–1528.
16. Lobinsky A.A., Tolstoy V.P. Red-ox reactions in aqueous solutions of Co(OAc)2 and K2S2O8 and synthesis of CoOOH nanolayers by the SILD method. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6, P. 843–849.
17. Tolstoi V.P. Synthesis of thin-layer structures by the ionic layer deposition method. Russian Chemical Reviews, 1993, 62, P. 237–242.
18. Massart R. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Transactions on Magnetics, 1981, 17, P. 1247– 1248.
19. Wiersema P.H., Loeb A.L., and Overbeek J.T.G. Calculation of the electrophoretic mobility of a spherical colloid particle. J. Colloid Interface Sci., 1966, 22, P. 78–99.
20. Marquez F., Campo T., Cotto M., Polanco R., Roque R., Fierro P., and all. Synthesis and Characterization of Monodisperse Magnetite ´ Hollow Microspheres. Soft Nanoscience Letters, 2011, 1, P. 25–32.
21. T. Nagyne Kovacs, Hunyadi D., A.L.A. de Lucena, Szilagyi I.M. Thermal decomposition of ammonium molybdates. Journal of Thermal Analysis and Calorimetry, 2016, 124, P. 1013–1021.
Review
For citations:
Kuklo L.I., Tolstoy V.P. Successive ionic layer deposition of Fe3O4@HxMoO4·nH2O composite nanolayers and their superparamagnetic properties. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(6):1050-1054. https://doi.org/10.17586/2220-8054-2016-7-6-1050-1054