Resistance of composite films based on polystyrene and graphene oxide
https://doi.org/10.17586/2220-8054-2016-7-6-1055-1058
Abstract
Polystyrene films prepared by radical polymerization can conduct electric current in metal-polymer-metal structures with film thicknesses of up to 20 nanometers. Films of polystyrene and graphene oxide composite with thickness up to 3 micrometers, synthesized in similar conditions have the same electric properties. This effect is explained by presence of highly conductive graphene oxide inclusions in the dielectric polystyrene matrix.
About the Authors
A. R. KhairullinRussian Federation
Bolshoy pr. 31, 199004 Saint Petersburg
M. N. Nikolaeva
Russian Federation
Bolshoy pr. 31, 199004 Saint Petersburg
A. N. Bugrov
Russian Federation
Bolshoy pr. 31, 199004 Saint Petersburg; ul. Professora Popova 5, 197376 St. Petersburg
References
1. Ionov A.N., Dunaevskii M.S., et al. The dependence of polymer conductivity on the work function of metallic electrodes. Ann. Phys., Berlin, 2009, 18, P. 959–962.
2. Nikolaeva M., BoikoY., Martynenkov A. Supramolecular structure and conductive properties of dielectric polymers in metal/polymer/metal systems. Int. J. Polym. Mat., 2013, 62(13), P. 706–710.
3. Nikolaeva M.N., Anan‘eva T.D., et al. Influence of chemical structure and chain length on conducting properties of dielectric polymers in metal/polymer/metal structures. Rus. J. Appl. Chem., 2013, 86(5), P. 756–759.
4. Nikolaeva M.N., Martynenkov A.A., et al. Resistance of dielectric polymer films with fillers in metal-polymer-metal systems. Rus. J. Appl. Chem, 2014, 87(5), P. 646–650.
5. Deepak A., Shankar P. Exploring the properties of lead oxide and tungsten oxide based graphene mixed nanocomposite films. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(3), P. 502–505.
6. Arhangorodsky V.M., Ionov A.N., et al. Ultra-high conductivity in the oxidized polypropylene at room temperature. JETP Letters, 1990, 51(1), P. 56–62. (in Russian)
7. Ionov A.N., Nikolaeva M.N., Rentzsch R. Local distribution of high-conductivity regions in polyamidine films. JETP Letters, 2007, 85, P. 636–638.
8. Ionov A.N., Nikolaeva M.N., Rentzsch R. Metallic conductivity in a polyamidine film. Physica C, 2007, 460-462, Part 1, P. 641-642.
9. Nikolaeva M.N., Aleksandrova G.P., Martynenkov A.A. Effect of electrization on molecular mobility in gold nanocomposites based on arabinogalactan. Rus. J. Phys.Chem. (A), 2012, 86, P. 812–815.
10. Nikolaeva M.N., Aleksandrova G.P., Ionov A.N. Correlation between the electrification and molecular mobility of noble metal nanocomposites based on arabinogalactan. Rus. J. Appl. Chem., 2011, 84, P. 450–453.
11. Ionov A.N., Svetlichnyi V.M., Rentzsch R. Electron transport in metal-polymer-metal systems. Physica B: Cond. Matter, 2005, 359-361, P. 506–510.
12. Rentzsch R., Ionov A.N., Nikolaeva M.N. Spreading resistance microscopy study of polyamidine thin films. Phys. Stat. Sol. (c), 2006, 3(2), P. 275–279.
13. Ionov A.N., Nikolaeva M.N., Pozdnyakov O.F., et al. Molecular structure of poly(siloxaneimide) films and the rate of charge relaxation. Polym. Sci. (A), 2008, 50, P. 174–182.
14. Ionov A.N., Rentzsch R., Nikolaeva M.N. Metallic conductivity in a polyamidine film. Phys. Stat. sol. (c), 2008, 5, P. 730–734.
15. Lowell J. and Rose-Innes A.C. Contact electrification. Adv. Phys, 1980, 29(6), P. 947–1023.
16. Duke C.B., Fabish T.J. Charge-induced relaxation in polymers. Phys. Rev. Lett., 1976, 37(16), P. 1075–1078.
17. Mikoushkin V.M., Shnitov V.V., Nikonov S.Yu. et al. Controlling Graphite Oxide Bandgap Width by Reduction in Hydrogen. Tech. Phys. Lett., 2011, 37(10), P. 942–945.
18. Bugrov A.N., Vlasova E.N., Mokeev M.V. et al. Distribution of zirconia nanoparticles in the matrix of poly(4,40- oxydiphenylenepyromellitimide). Polym. Sci. Ser. B., 2012, 54, P. 486–495.
19. Nikolaeva M.N., Bugrov A.N., et al. Conductive properties of the composite films of graphene oxide based on polystyrene in a metalpolymer-metal structure. Russ. J. Appl. Chem., 2014, 87(8), P. 1151–1155.
20. Ionov A.N. Josephson current-voltage characteristic of a composite based on polystyrene and graphene oxide. Tech. Phys. Lett., 2015, 41(7), P. 651–653.
21. Ionov A.N. Josephson-Like Behaviour of the Current-Voltage Characteristics of Multi-graphene Flakes Embedded in Polystyrene. J. Low Temp. Phys., 2016, 182(3/4), P. 107–114.
22. Hummers W., Offeman R. Preparation of graphitic oxide J. Am. Chem. Soc., 1958, 80(6), P. 1339–1339.
23. Hazarika M., Jana T. Graphene nanosheets generated from sulfonated polystyrene/ graphene Nanocomposite. Cmpos. Sci. Tech., 2013, 87, P. 94–102.
24. Heikkila T., Kopnin N.B., Volovik G. Flat bands in topological media. ¨ JETP Lett, 2011, 94, P. 233–237.
25. San-Jose P., Prada E. Helical networks in twisted bilayer graphene under interlayer bias. Phys. Rev. B, 2013, 88, P. 121408.
26. Uchoa B., Barlas Y. Superconducting states in pseudo-Landau levels of strained graphene. Phys. Rev. Lett., 2013, 111(1–5), P. 046604.
27. Bianconi A., Jarlborg T. Lifshitz ons and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Nov. Supercond. Mater., 2015, 1, P. 37–49.
Review
For citations:
Khairullin A.R., Nikolaeva M.N., Bugrov A.N. Resistance of composite films based on polystyrene and graphene oxide. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(6):1055-1058. https://doi.org/10.17586/2220-8054-2016-7-6-1055-1058