Effect of heterogeneous inclusions on the formation of TiO2 nanocrystals in hydrothermal conditions
https://doi.org/10.17586/2220-8054-2019-10-6-733-739
Abstract
The effects of heterogeneous impurities on the process of titanium dioxide nanoparticle formation during hydrothermal synthesis and photocatalytic properties of synthesized particles were studied. Pre-formed TiO2 nanoparticles of anatase and rutile modifications were used as the heterogeneous impurity. It is shown that the heterogeneous impurities may be considered neither as geometric constraints precluding the crystallization, nor as crystallization centers.
About the Authors
V. V. ZlobinRussian Federation
Professor Popov St. 5, Saint Petersburg, 197376
A. A. Krasilin
Russian Federation
Politekhnicheskaya St. 26, Saint Petersburg, 194021
O. V. Almjasheva
Russian Federation
Professor Popov St. 5, Saint Petersburg, 197376; Politekhnicheskaya St. 26, Saint Petersburg, 194021
References
1. Savinkina E.V., Kuz’micheva G.M., et al. Synthesis and morphology of anatase and η-TiO2 nanoparticles. Inorganic Materials, 2011, 47 (5), P. 489–494.
2. Hanaor D.A.H. Sorrell C.C. Review of the anatase to rutile phase transformation. Journal of Materials Science, 2011, 46 (4), P. 855–874.
3. Esmaeilzadeh J., Ghashghaie S., et al. Effect of dispersant on chain formation capability of TiO2 nanoparticles under low frequency electric fields for NO2 gas sensing applications. Journal of the European Ceramic Society, 2014, 34 (5), P. 1201–1208.
4. Rahiminezhad-Soltani M., Saberyan K., Shahri F., Simchi A. Formation mechanism of TiO2 nanoparticles in H2O-assisted atmospheric pressure CVS process. Powder Technology, 2011, 209 (1–3), P. 15–24.
5. Kumar C.A.V., Rajadurai J.S. Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy. Transactions of Nonferrous Metals Society of China, 2016, 26 (1), P. 63–73.
6. Chougule A.B., Patil P.M., Umasankar V. Enhancement of hardness property of AA2219 by varying TiO2 percentage as a reinforcement. Materials Today: Proceedings, 2018, 5 (2, Part 2), P. 7628–7634.
7. Lu¨ X., Yang W., et al. Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-Induced phase transitions. Journal of the American Chemical Society, 2014, 136 (1), P. 419–426.
8. Huang Y., Zhang J. The electrical behaviors of anatase titanium dioxide (TiO2) nanoparticles under high pressure. Solid State Communications, 2019, 287, P. 1–6.
9. Shen L., Zhang X., et al. Design and tailoring of a three dimensional TiO2-graphene-carbon nanotube nanocomposite for fast lithium storage. The Journal of Physical Chemistry Letters, 2011, 2 (24), 3096.
10. Tian C. Internal influences of hydrolysis conditions on rutile TiO2 pigment production via short sulfate process. Materials Research Bulletin, 2018, 103, P. 83–88.
11. Sun M., Liu F., Shi H. Han E. A study on water absorption in freestanding polyurethane films filled with nano-TiO2 pigments by capacitance measurements. Acta Metallurgica Sinica (English Letters), 2009, 22 (1), P. 27–34.
12. Vildanova M.F., Kozlov S.S., et al. Niobium-doped titanium dioxide nanoparticles for electron transport layers in perovskite solar cells. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (4), P. 540–545.
13. Haffad S., Kiprono K.K. Interfacial structure and electronic properties of TiO2/ZnO/TiO2 for photocatalytic and photovoltaic applications: A theoretical study. Surface Science, 2019, 686, P. 10–16.
14. Wan J., Tao L., et al. A facile method to produce TiO2 nanorods for high-efficiency dye solar cells. Journal of Power Sources, 2019, 438, 227012.
15. Marandi M., Goudarzi Z., Moradi L. Synthesis of randomly directed inclined TiO2 nanorods on the nanocrystalline TiO2 layers and their optimized application in dye sensitized solar cells. Journal of Alloys and Compounds, 2017, 711, P. 603–610.
16. Lamberti A., Pirri C.F. TiO2 nanotube array as biocompatible electrode in view of implantable supercapacitors. Journal of Energy Storage, 2016, 8, P. 193–197.
17. Katahira K., Mifune N., Komotori J. Generation of biocompatible TiO2 layer using atmospheric pressure plasma-assisted fine particle peening. CIRP Annals, 2017. 66 (1), P. 515–518.
18. Kolen’ko Y.V., Garshev A.V., et al. Photocatalytic activity of sol-gel derived titania converted into nanocrystalline powders by supercritical drying. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, P. 19–26.
19. Cabrera-Reina A., Mart´ınez-Piernas A.B., et al. TiO2 photocatalysis under natural solar radiation for the degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions at pilot plant scale. Water Research, 2019, 166, 115037.
20. Vorontsov, A.V., Kozlov, D. V., Smirniotis, P. G., Parmon, V. N. TiO2 photocatalytic oxidation: II. Gas-phase processes. Kinetics and Catalysis, 2005, 46 (3), P. 422–436.
21. Humayun M., Raziq F., Khan A., Luo W. Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chemistry Letters and Reviews, 2018, 11 (2), P. 86–102.
22. Savinkina E.V., Obolenskaya L.N., et al. A new η-itania-based photocatalyst. Doklady Physical Chemistry, 2011, 441 (1), P. 224–226.
23. Savinkina E.V., Obolenskaya L.N., et al. Effects of peroxo precursors and annealing temperature on properties and photocatalytic activity of nanoscale titania. Journal of Materials Research, 2018, 33 (10), P. 1422–1432.
24. Rahiminezhad-Soltani M., Saberyan K., Shahri F., Simchi A. Formation mechanism of TiO2 nanoparticles in H2O-assisted atmospheric pressure CVS process. Powder Technology, 2011, 209 (1–3), P. 15–24.
25. Machida M, Kobayashi M., Suzuki Y., Abe H. Facile synthesis of > 99 % phase-pure brookite TiO2 by hydrothermal conversion from Mg2TiO4. Ceramics International, 2018. 44 (14), P. 17562–17565.
26. Allen N.S., Mahdjoub N., et al. The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polymer Degradation and Stability, 2018, 150, P. 31–36.
27. Leal J.H., Cantu Y., Gonzalez D.F., Parsons J.G. Brookite and anatase nanomaterial polymorphs of TiO2 synthesized from TiCl3. Inorganic Chemistry Communications, 2017, 84, P. 28–32.
28. de Mendona V.R., Lopes O.F., et al. Insights into formation of anatase TiO2 nanoparticles from peroxo titanium complex degradation under microwave-assisted hydrothermal treatment. Ceramics International, 2019, 45 (17, Part B), P. 22998–23006.
29. Macwan D.P., Dave P.N., Chaturvedi S. A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science, 2011, 46 (11), P. 3669–3686.
30. Kaifeng Yu K., Ling M., Liang J., Liang C. Formation of TiO2 hollow spheres through nanoscale Kirkendall effect and their lithium storage and photocatalytic properties. Chemical Physics, 2019, 517, P. 222–227.
31. Wang C.-C., Ying J.Y. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chemistry of Materials, 1999, 11 (19), P. 3113–3120.
32. Ding X.-Z., Liu X.-H. Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. Journal of Materials Research, 1998, 13 (9), P. 2556–2559.
33. Gribb A.A., Banfield J.F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist, 1997, 82, P. 717–728.
34. Yang J., Gao M., et al. Hysteretic phase transformation of two-dimensional TiO2. Materials Letters, 2018, 232, P. 171–174.
35. Wang Y., Zhang W., et al. Fabrication of TiO2(B)/anatase heterophase junctions in nanowires via a surface-preferred phase transformation process for enhanced photocatalytic activity. Chinese Journal of Catalysis, 2018, 39 (9), P. 1500–1510.
36. Ohtani B., Prieto-Mahaney O.O., Li D., Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216 (2–3), P. 179–182.
37. Ohno T., Sarukawa K., Matsumura M. Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powder by Dissolving the Anatase Component in HF Solution. The Journal of Physical Chemistry B, 2001, 105, P. 2417–2420.
38. Yorov Kh.E., Sipyagina N.A., et al. SiO2–TiO2 binary aerogels: Synthesis in new supercritical fluids and study of thermal stability. Russian Journal of Inorganic Chemistry, 2016, 61 (11), P. 1339–1346
39. Almjashev O.V., Gusarov V.V. Effect of ZrO2 nanocrystals on the stabilization of the amorphous state of alumina and silica in the ZrO2–Al2O3 and ZrO2–SiO2 systems. Glass Physics and Chemistry, 2006, 32 (2), P. 162–166.
40. Gusarov V.V. Malkov A.A., Malygin A.A., Suvorov S.A. Formations of aluminum titanate in compositions with a high level of spatial and structural conjugation of components. Russian Journal of General Chemistry, 1994, 64 (4), P. 554–557. (in Russian)
41. Spurr R.A., Myers H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry, 1957, 29 (5), P. 760–762.
42. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2–H2O system. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (6), P. 1031–1049.
43. Al’myashev O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russian Journal of General Chemistry, 2010, 80 (3), P. 385–390
44. Almjasheva O.V. Formation of oxide nanocrystals and nanocomposites in hydrothermal conditions, structure and properties of materials on their basis. Abstract of dissertation for the degree of Doctor of Sciences, 2018, 44 p. (in Russian)
45. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5 (3), P. 405–417.
46. Lebedev V.A., Kozlov D.A., et al. The amorphous phase in titania and its influence on photocatalytic properties. Applied Catalysis B: Environmental, 2016, 195, P. 39–47.
47. Proskurina O.V., Nogovitsin I.V., et al. Formation of BiFeO3 nanoparticles using impinging jets microreactor. Russian Journal of General Chemistry, 2018, 88 (10), P. 2139–2143.
48. Abiev R.S., Almyasheva O.V., Izotova S.G., Gusarov V.V. Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors. Journal of Chemical Technology and Applications, 2017, 1 (1), P. 7–13.
Review
For citations:
Zlobin V.V., Krasilin A.A., Almjasheva O.V. Effect of heterogeneous inclusions on the formation of TiO2 nanocrystals in hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(6):733-739. https://doi.org/10.17586/2220-8054-2019-10-6-733-739