Graphene edge spins: spintronics and magnetism in graphene nanomeshes
Abstract
We have fabricated low-defect graphene nanomeshes (GNMs) by using a non-lithographic method and observed large-amplitude ferromagnetism even at room temperature, only when pore edges of the GNMs were hydrogenterminated. The observed correlation between the inter-pore spacing and magnetism and also magnetic force microscope observations suggest that it is attributed to polarzied electron spins localized at the zigzag-type atomic structured pore-edges. The magnetic moment per edge dangling bond (∼0.3 µB) is also in quantitative agreement with two theories. Moreover, a spin pumping effect is found for fields applied in parallel with the GNM planes in few-layer ferromagnetic GNMs, while a magnetoresistance (MR) hysteresis loop is observed under perpendicular fields. The present ferromagnetic GNMs must also realize rare-element free, invisible, flexible, and ultra-light (wearable) magnets and spintronic devices, which can overcome environmental and material-resource problems.
About the Authors
T. HashimotoJapan
Faculty of Science and Engineering
Kanagawa
S. Kamikawa
Japan
Faculty of Science and Engineering
Kanagawa
Y. Yagi
Japan
Faculty of Science and Engineering
Kanagawa
J. Haruyama
Japan
Faculty of Science and Engineering
Kanagawa
H. Yang
France
38054, Grenoble cedex 9
M. Chshiev
France
38054, Grenoble cedex 9
References
1. Nakada K., Fujita M., Dresselhaus G., Dresselhaus M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B, 54, P. 17954 (1996).
2. Fujita M., Wakabayashi K., Nakada K., Kusakabe K. Peculiar Localized State at Zigzag Graphite Edge. J. Phys. Soc. Jpn., 65, P. 1920 (1996).
3. Kusakabe K., Maruyama M. Magnetic nanographite. Phys. Rev. B, 67, P. 092406(4p) (2003).
4. Okada S., Oshiyama A. Magnetic Ordering in Hexagonally Bonded Sheets with First-Row Element. Phys. Rev. Lett., 87, P. 146803(6p) (2001).
5. Lee H., Son Y.-W., et al. Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states. Phys. Rev. B, 72, P. 174431 (2005).
6. Veiga R.G.A., Miwa R.H., Srivastava G.P. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons. J. Chem. Phys., 128, P. 201101(3p) (2008).
7. Lee H., Park N., et al. Ferromagnetism at the edges of the stacked graphitic fragments: an ab initio study. Chem. Phys. Lett., 398, P. 207–201 (2004).
8. Asano H., Muraki S., et al. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas. J. Phys.: Cond. Mat., 22, P. 334209(4p) (2010).
9. Enoki T., Takai K. The edge state of nanographene and the magnetism of the edge-state spins. Sol. State Commun., 149, P. 1144–1150 (2009).
10. Niimi Y., Matsui T., et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B, 73, P. 085421 (2006).
11. Son Y.-W., Cohen M.L., Louie S.G. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett., 97, P. 216803(4p) (2006).
12. Yang L., Louie S.G., et al. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons. Phys. Rev. Lett., 99, P. 186801(4p) (2007).
13. Shima N., Aoki H. Electronic structure of super-honeycomb systems: A peculiar realization of semimetal/semiconductor classes and ferromagnet. Phys. Rev. Lett., 71, P. 4389–4392 (1993).
14. Rosser J.F., Palacios J.J. Magnetism in Graphene Nanoislands. Phys. Rev. Lett., 99, P. 177204 (2007)s.
15. Jia X., Hofmann M., et al. Controlled Formation of Zigzag and Armchair Edges in Graphene Nanoribbons by Joule Heating. Science, 323, P. 1701 (2009).
16. Girit C.O., Meyer J.C., et al. Graphene at the edge: Stability and Dynamics. Science, 323, P. 1705 (2009).
17. Shimizu T., Haruyama J., et al. Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nature Nanotech., 6, P. 45–50 (2011).
18. Han M.Y., Brant J.C., Kim P. nsElectron Transport in Disordered Graphene Nanoribbons. Phys. Rev. Lett., 104, P. 056801(4p) (2010).
19. Wang X., Ouyang Y., et al. Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon FieldEffect Transistors. Phys. Rev. Lett., 100, P. 206803(4p) (2008).
20. Krauss B., Nemes-Incze P., et al. Raman Scattering at Pure Graphene Zigzag Edges. Nano Lett., 10, P. 4544– 4548 (2010).
21. Bai J., Zhong X., et al. Graphene nanomesh. Nature Nanotech., 5, P. 190–194 (2010).
22. Son Y.-W., Cohen M.L., Louie S.G. Half-metallic graphene nanoribbons. Nature, 444, P. 347–349 (2006).
23. Takesue I., Haruyama J., et al. Superconductivity in Entirely End-Bonded Multiwalled Carbon Nanotubes. Phys. Rev. Lett., 96, P. 057001(4p) (2006).
24. Murakami S., Nagaosa N., Zhang S.-C. Dissipationless Quantum Spin Current at Room Temperature. Science, 301, P. 1348–1351 (2003).
25. Kane C.L., Mele E.J. Quantum Spin Hall Effect in Graphen. Phys. Rev. Lett., 95, P. 226801(4p) (2005).
26. Kane C.L. Graphene and the Quantum Spin Hall Effect. Int. J. Modern Phys. B, 21, P. 1155–1164 (2007).
27. Schmidt M.J., Loss D. Edge states and enhanced spin-orbit interaction at graphene/graphane interfaces. Phys. Rev. B, 81, P. 165439(12p) (2010).
28. Otani M., Koshino M., Takagi Y., Okada S. Intrinsic magnetic moment on (0001) surfaces of rhombohedral graphite. Phys. Rev. B, 81, P. 161403(R)(4p) (2010).
29. Yang H., Chshiev M., et al. Inducing and Optimizing Magnetism in Graphene Nanomesh. URL: http://arxiv.org/abs/1103.4188.
30. You Y.-M., Ni Z.-H., Yu T., Shen Z.X. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett., 93, P. 163112(1–3) (2008).
31. Soriano D., Leconte N., et al. Magnetoresistance and Magnetic Ordering Fingerprints in Hydrogenated Graphene. Phys. Rev. Lett., 107, P. 016602(4p) (2011).
32. Abanin D.A., Morozov S.V., et al. Giant nonlocality near the Dirac point in graphene. Science, 332 (6027), P. 328–330 (2011).
33. Shimizu T., Nakamura J., et al. Magnetoresistance oscillations arising from edge-localized electrons in lowdefect graphene antidot-lattices. Appl. Phys. Lett., 100, P. 023104 (2012).
Review
For citations:
Hashimoto T., Kamikawa S., Yagi Y., Haruyama J., Yang H., Chshiev M. Graphene edge spins: spintronics and magnetism in graphene nanomeshes. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(1):25-38.