Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Cytotoxicity analysis of gadolinium doped cerium oxide nanoparticles on human mesenchymal stem cells

https://doi.org/10.17586/2220-8054-2018-9-3-430-438

Abstract

A complex analysis of cytotoxicity was performed for a nanodispersed sol of cerium dioxide doped with gadolinium (Ce0.8Gd0.2O2−x) using a culture of mesenchymal stem cells. The absence of cyto- and genotoxicity over a wide range of concentrations (10−5 – 10−9 M) was demonstrated. At that, the highest concentration of Ce0.8Gd0.2O2−x nanoparticles (10−4 M) was found to slightly reduce the activity of intracellular dehydrogenase, yet not leading to the development of apoptosis and further cell death. The obtained results confirm a high degree of Ce0.8Gd0.2O2−x nanoparticle biocompatibility, which opens prospects for their safe application as a contrasting agent in the magnetic resonance tomography.

About the Authors

A. L. Popov
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region, 142290



I. V. Savintseva
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region, 142290



E. A. Mysina
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region, 142290



A. B. Shcherbakov
Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine
Ukraine

Kyiv D0368



N. R. Popova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region, 142290



O. S. Ivanova
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation

Moscow 119991



D. D. Kolmanovich
Kabardino-Balkarian State University
Russian Federation

Nalchik, 360004



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences; Moscow Technological University, Institute of Fine Chemical Technologies
Russian Federation

Moscow 119991

Moscow 119991



References

1. Khodke M.R., Joshi S.V. An investigative study on application of carbon nanotubes for strain sensing. Nanosystems: Phys., Chem., Math., 2016, 7 (4), P. 755–758.

2. Suganthi G., Arockiadoss T., Uma T.S. ZnS nanoparticles decorated graphene nanoplatelets as immobilisation matrix for glucose biosensor. Nanosystems: Phys., Chem., Math., 2016, 7 (4), P. 637–642.

3. Karthikeyan N., Narayanan V., Stephen A. Visible light degradation of textile effluent using nanostructured TiO2/Ag/CuO photocatalysts Nanosystems: Phys., Chem., Math., 2016, 7 (4), P. 695–698.

4. Rokesh K., Jeganathan K., Jothivenkatachalam K. Zinc oxide-palladium material an efficient solar-light driven photocatalyst for degradation of congo red. Nanosystems: Phys., Chem., Math., 2016, 7 (4), P. 740–746.

5. Mubofu E.B., Mlowe S., Revaprasadu N. Cashew nut shells as source of chemicals for preparation of chalcogenide nanoparticles. Nanosystems: Phys., Chem., Math., 2016, 7 (4), P. 724–727.

6. Nanjunda Reddy B.H., Venkata Lakshmi V., Vishnu Mahesh K.R., Mylarappa M., Raghavendra N., Venkatesh T. Preparation of chitosan/different organomodified clay polymer nanocomposites: studies on morphological, swelling, thermal stability and anti-bacterial properties. Nanosystems: Phys., Chem., Math., 2016, 7 (4), P. 667–674.

7. Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res. 2016, 33 (10), P. 2373–87.

8. Popov A.L., Shcherbakov A.B., Zholobak N.M., Baranchikov A.Ye., Ivanov V.K. Cerium dioxide nanoparticles as third-generation enzymes (nanozymes). Nanosystems: Phys., Chem., Math., 2017, 8 (6), P. 760–781.

9. Shcherbakov A.B., Ivanov V.K., Zholobak N.M., Ivanova O.S., Krysanov E.Y., Baranchikov A.E., Spivak N.Ya., Tretyakov Y.D. Nanocrystalline ceria based materials-Perspectives for biomedical application. Biophysics, 2011, 56, P. 987–1004.

10. Ivanov V.K., Shcherbakov A.B., Baranchikov A.E., Kozik V.V. Synthesis, structure, physicochemical properties and biological activity of nanodispersed cerium dioxide. Tomsk, Tomsk State University, 2013.

11. Ivanov V.K., Shcherbakov A.B., Usatenko A.V. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev., 2009, 78, P. 855–871.

12. Tarnuzzer R.W., Colon J., Patil S., Seal S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett., 2005, 5, P. 2573–2577.

13. Karakoti A.S., Singh S., Kumar A., Malinska M., Kuchibhatla S.V.N.T., Wozniak K., Self W.T., Seal S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc., 2009, 131, P. 14144–14145.

14. Korsvik C., Patil S., Seal S., Self W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun., 2007, P. 1056–1058.

15. Shcherbakov A.B., Ivanov V.K., Sirota T.V., Tret’yakov Y.D. Inhibition of adrenaline autooxidation by nanocrystalline ceria. Doklady Chem., 2011, 437, P. 60–62.

16. Das S., Dowding J.M., Klump K.E., McGinnis J.F., Self W., Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine, 2013, 8, P. 1483–1508.

17. Ivanova O.S., Shekunova T.O., Ivanov V.K., Shcherbakov A.B., Popov A.L., Davydova G.A., Tret’yakov Y.D. One-stage synthesis of ceria colloid solutions for biomedical use. Doklady Chem., 2011, 437, P. 103–106.

18. Shcherbakov A.B., Zholobak N.M., Ivanov V.K., Ivanova O.S., Marchevsky A.V., Baranchikov A.E., Tretyakov Y.D. Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria. Russ. J. Inorg. Chem., 2012, 57, P. 1411–1418.

19. Karakoti A.S., Munusamy P., Hostetler K., Kodali V., Kuchibhatla S., Orr G., Pounds J.G., Teeguarden J.G., Thrall B.D., Baer D.R. Preparation and characterization challenges to understanding environmental and biological impacts of nanoparticles. Surf. Interface Anal., 2011, 44, P. 882–889.

20. Zholobak N.M., Shcherbakov A.B., Bogorad-Kobelska A.S., Ivanova O.S., Baranchikov A.Ye., Spivak N.Ya., Ivanov V.K. Panthenolstabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage. J. Photochem. Photobiol. B, 2014, 130, P. 102–108.

21. Gasymova G.A., Ivanova O.S., Baranchikov A.Ye., Shcherbakov A.B., Ivanov V.K., Tretyakov Yu.D. Synthesis of aqueous sols of nanocrystalline ceria doped with gadolinia. Nanosystems: Phys., Chem., Math., 2011, 2 (3), P. 113–120 (in Russian).

22. Xiao Y.D., Paudel R., Liu J., Ma C., Zhang Z.S., Zhou S.K. MRI contrast agents: Classification and application (Review). Int. J. Mol. Med., 2016, 38 (5), P. 1319–1326.

23. Zhou Z., Lu Z.-R. Gadolinium-Based Contrast Agents for MR Cancer Imaging Wiley Interdiscip Rev Nanomed Nanobiotechnol., 2013, 5 (1), P. 1–18.

24. Ramalho J., Ramalho M., Jay M., Burke L.M., Semelka R.C. Gadolinium toxicity and treatment Magnetic Resonance Imaging, 2016, 34, P. 1394–1398.

25. Aime S., Barge A., Botta M., Casnati A., Fragai M., Luchinat C., Ungaro R. A Calix[4]arene Gd III Complex Endowed with High Stability, Relaxivity, and Binding Affinity to Serum Albumin Angewandte Chemie International Edition, 2001, 40 (24), P. 4737–4739.

26. Zholobak N.M., Popov A.L., Shcherbakov A.B., Popova N.R., Guzyk M.M., Antonovich V.P., Yegorova A.V., Scrypynets Y.V., Leonenko I.I., Baranchikov A.Ye., Ivanov V.K. Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labeling. Beilstein Journal of Nanotechnology., 2016, 7, P. 1905–1917.

27. Patil S., Sandberg A., Heckert E., Self W., Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials, 2007, 28 (31), P. 4600-7.

28. Popov A.L., Popova N.R., Selezneva I.I., Akkizov A.Y., Ivanov V.K. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Materials Science and Engineering: C, 2016, 68, P. 406–413.

29. Popov A.L., Ermakov A.M., Savinstseva I.V., Selezneva I.I., Poltavtseva R.A., Zaraisky E.I., Poltavtsev A.M., Stepanov A.A., Ivanov V.K., Sukhikh G.T. Citrate-stabilized nanoparticles of CeO2 stimulate proliferation of human mesenchymal stem cells in vitro. Int. J. Nanomech. Sci. Tech., 2016, 7 (3), P. 1–12.

30. Popov A.L., Ermakov A.M., Savintseva I.V., Selezneva I.I., Poltavtseva R.A., Zaraiskii E.I., Poltavtsev A.M., Stepanova I.E., Ivanov V.K., Sukhikh G.T. Biosafety and effect of nanoparticles of CeO2 on metabolic and proliferative activity of human mesenchymal stem cells in vitro. Int. J. Nanomech. Sci. Tech., 2016, 7 (2), P. 165–75.

31. Muller F., Lustgarten M., Jang Y., Richardson A., van Remmen H. Trends in oxidative aging theories Free Radic. Biol. Med., 2007, 43, P. 477–503.

32. Zacharias L.C., Estrago-Franco M.F., Ramirez C., Kenney M.C., Takahashi W.Y., Seigel G.M., Kuppermann B.D. The effects of commercially available preservative-free FDA-approved triamcinolone (Triesencer) on retinal cells in culture. J. Ocul. Pharmacol. Ther., 2011, 27 (2), P. 143–50.

33. Gr¨undker C., F¨ost C., Fister S., Nolte N., G¨unthert A.R., Emons G. Gonadotropin-releasing hormone type II antagonist induces apoptosis in MCF-7 and triple-negative MDA-MB-231 human breast cancer cells in vitro and in vivo. Breast Cancer Research, 2010, 12, P. R49.


Review

For citations:


Popov A.L., Savintseva I.V., Mysina E.A., Shcherbakov A.B., Popova N.R., Ivanova O.S., Kolmanovich D.D., Ivanov V.K. Cytotoxicity analysis of gadolinium doped cerium oxide nanoparticles on human mesenchymal stem cells. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(3):430-438. https://doi.org/10.17586/2220-8054-2018-9-3-430-438

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)