Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Propagation of femtosecond pulses in carbon nanotubes

Abstract

The generation of higher harmonics of carbon nanotubes interacting with femtosecond laser pulses was investigated. The analysis was conducted on the basis of quantum kinetic equation for the π-electrons involved in the inside of the band and inter-band transitions. The dynamics of the electromagnetic pulse, depending on the parameters of the problem, were studied.

About the Authors

N. N. Konobeeva
Volgograd State University
Russian Federation

Volgograd



M. B. Belonenko
Volgograd Institute of Business
Russian Federation

Volgograd



References

1. Calvayrac F., Reinhard P.-G., Suraud E., Ullrich C.A. Nonlinear electric dynamics in metal clusters. Phys. Rep., 337, P. 493–578 (2000).

2. Veniard V., Taieb R., Maguet A. Atomic clusters submitted to an intense short laser pulse: A density-functional approach. Phys. Rev. A, 65, P. 013202(1-7) (2001).

3. Daligault J., Guet C. Kinetic and Coulombic effects in the explosion dynamics of metal clusters in intense femtosecond laser fields. Phys. Rev. A, 64, P. 043203(1-5) (2001).

4. Hertel I.V., Steger H., et al. Giant plasmon excitation in free C60 and C70 molecules studied by photoionization. Phys. Rev. Lett., 68, P. 784–787 (1992).

5. Hunsche S., Starczewski T., et al. Ionization and fragmentation of C60 via multiphoton-multiplasmon excitation. Phys. Rev. Lett., 77, P. 1966–1969 (1996).

6. Cambell E.E.B., Hansen K., et al. From above threshold ionization to statistical electron emission: The laser pulse-duration dependence of C60 photoelectron spectra. Phys. Rev. Lett., 84, P. 2128–2131 (2000).

7. Stanciu C., Ehlich R., et al. Experimental and theoretical study of third-order harmonic generation in carbon nanotubes. Appl. Phys. Lett., 81, P. 4064–4066 (2002).

8. Chen Y.-C., Raravikar N.R., et al. Ultrafast iptical switching properties of single-wall carbon nanotube polymer composites at 1.55 mm. Appl. Phys. Lett., 81, P. 975–977 (2002).

9. Ferray M., L’Huillier A., et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At. Mol. Opt. Phys., 21, L31 (1988).

10. Chang Z., Rundquist A., et al. Generation of coherent soft X rays at 2.7 nm using high harmonics. Phys. Rev. Lett., 79, P. 2967–2970 (1997).

11. Il’inskii Yu.A., Keldysh L.V. Electromagnetic Response of Material Media. Plenum, New York, 1994, 304 p.

12. Davydov A.S. Quantum Mechanics. Pergamon, Oxford, 1976, 168 p.

13. Slepyan G.Ya., Khrutchinski A.A., Nimelentsau A.M., Maksimenko S.A. High-order optical harmonic generation on carbon nanotubes: quantum-mechanical approach. Int. J. Nanoscience, 3, P. 343–354 (2004).

14. Wallace P.R. The Band Theory of Graphite. Phys. Rev., 71, P. 622–634 (1947).

15. Belonenko M.B., Glazov S.Yu., Meshcheryakova N.E. Dynamics of electromagnetic pulses with wide spectra in semiconductor superlattices. J. Russian Laser Research, 29 (2), P. 114–122 (2008).

16. Vongradova M.B., Rudenko O.V., Sukhorukov A.P. Wave theory. Nauka, Moscow, 1990, 432 p.

17. Yanyushkina N.N., Belonenko M.B. The influence of self-nonlinearity on the propagation of ultrashort optical pulses in carbon nanotubes in dispersive non-magnetic dielecrtric media. Zh. Techn. Fiz., 83 (4), P. 155–158 (2013).

18. Sazonov S.V. The effect of resonance transparency anisotropic medium with a permanent dipole moment. Zh. Eksp. Teor. Fiz., 124, P. 803–819 (2003).

19. Sazonov S.V. Nonlinear propagation regimes of resonant pulses in multilevel quantum media. Opt. Spektrosk., 95, P. 666–674 (2003).

20. Kalitkin N.N. Calculation methods. Nauka, Moscow, 1978. 512 p.


Review

For citations:


Konobeeva N.N., Belonenko M.B. Propagation of femtosecond pulses in carbon nanotubes. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(1):91-97.

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)