Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Linearized KdV equation on a metric graph

https://doi.org/10.17586/2220-8054-2015-6-6-757-761

Abstract

We address a linearized KdV equation on metric star graphs with one incoming finite bond and two outgoing semi-infinite bonds. Using the theory of potentials, we reduce the problem to systems of linear integral equations and show that they are uniquely solvable under conditions of the uniqueness theorem.

About the Authors

Z. A. Sobirov
Faculty of Mechanics and Mathematics, National University of Uzbekistan ; Applied Mathematics Department of Tashkent Financial Institute
Uzbekistan

Vuzgorodok, 100047 Tashkent 

100000 Tashkent 



M. I. Akhmedov
Applied Mathematics Department of Tashkent Financial Institute
Uzbekistan

100000 Tashkent 



O. V. Karpova
Faculty of Physics, National University of Uzbekistan ; Turin Polytechnic University in Tashkent
Uzbekistan

 Vuzgorodok, 100047 Tashkent 



B. Jabbarova
Urganch State University
Uzbekistan

Urganch



References

1. S. Abdinazarov. The general boundary value problem for the third order equation with multiple characteristics (in Russian). Differential Equations, 1881, 3(1), P. 3{12.

2. J.L. Bona and A.S. Fokas. Initial-boundary-value problems for linear and integrable nonlinear dispersive partial differential equations. Nonlinearity, 2008, 21, P. 195{203.

3. L. Cattabriga. Unproblema al contorno per unaequazioneparabolica di ordinedispari. Annalidella Scuola Normale Superiore di Pisa a mat., Serie III, 13(2), 1959.

4. J. E. Colliander, C. E. Kenig. The generalized Korteweg-de Vries equation on the half line. Commun. Partial Differ. Equations, 2002, 27(11-12), P. 2187{2266.

5. T. D. Djuraev. Boundary value problems for mixed and mixid-composite type equations, (in Russian). Fan, Tashkent, 1979.

6. A. V. Faminskii, N. A. Larkin. Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval. Electron. J. Differ. Equ., 2010, 2010(20).

7. A.S. Fokas and L.Y. Sung. Initial boundary value problems for linear dispersive evolution equations on the half line. Technical report of Industrial Mathematics Institute at the University of South Carolina, 1999.

8. M. Rahimy. Applications of fractional differential equations. Applied Mathematical Sciences, 2010, 4(50), P. 2453{2461.

9. R.Gorenflo, F. Mainard. Fractional calculus: Integral and differential equations of fractional order. arXiv:0805.3823v1, 2008.

10. E. Taflin. Analytic linearization of the Korteweg-De Vries equation. Pacific Journal of Mathematics, 1983, 108(1).

11. V. Belashov, S. Vladimirov. Solitary waves in dispersive complex media: theory, simulation, application. Springer, 2005.

12. G.B. Whitham. Linear and nonlinear waves. Pure and Applied Mathematics, Wiley-Interscience., 1974.

13. Z.A. Sobirov, H. Uecker, M. Akhmedov. Exact solutions of the Cauchy problem for the linearized KdV equation on metric star graphs. Uz. Math. J., 2015, 3.

14. A. R. Khashimov. Some properties of the fundamental solutions of non-stationary third order composite type equation in multidimensional domains. Journal of Nonlinear Evolution Equations and Applications, January 2013, 2013(1), P. 1{9.

15. A.R. Khashimov, S. Yakubov. On some properties of cauchy problem for non-stationary third order composite type equation. Ufa Mathematical Journal, 2014, 6(4), P. 135{144.

16. Z. A. Sobirov, M. I. Akhmedov, H. Uecker. Cauchy problem for the linearized KdV equation on general metric star graphs. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(1), P. 198{204.


Review

For citations:


Sobirov Z.A., Akhmedov M.I., Karpova O.V., Jabbarova B. Linearized KdV equation on a metric graph. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):757-761. https://doi.org/10.17586/2220-8054-2015-6-6-757-761

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)