Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Spectral properties of shungite quantum dots

Abstract

A low-temperature study has been performed for aqueous shungite, carbon tetrachloride, and toluene dispersions. Spectral characteristics for graphene quantum dots (GQDs) of shungite, attributed to individual fragments of reduced graphene oxide (rGO), reveal a dual character of the dispersions emitting centers: individual GQDs are responsible for the spectra position while fractal structure of GQD colloids provides large broadening of the spectra due to structural inhomogeneity of the colloidal dispersions and a peculiar dependence of photoluminescence of dispersions on excitation wavelength. For the first time, photoluminescence spectra of individual GQDs were observed in frozen toluene dispersions, which pave the way for a theoretical treatment of GQDs photonics.

About the Authors

B. S. Razbirin
Ioffe Physical-Technical Institute, RAS
Russian Federation

Saint Petersburg



N. N. Rozhkova
Institute of Geology Karelian Research Centre RAS
Russian Federation

Petrozavodsk



E. F. Sheka
Peoples’ Friendship University of Russia
Russian Federation

Moscow



D. K. Nelson
Ioffe Physical-Technical Institute, RAS
Russian Federation

Saint Petersburg



A. N. Starukhin
Ioffe Physical-Technical Institute, RAS
Russian Federation

Saint Petersburg



А. S. Goryunov
Institute of Biology Karelian Research Centre RAS
Russian Federation

Petrozavodsk



References

1. Rozhkova N.N., Sheka E.F. Shungite as loosely packed fractal nets of graphene-based quantum dots. arXiv:1308.0794 [cond-mat.mtrl-sci] (2013).

2. Trauzettel B., Bulaev D.V., Loss D., Burkard G. Spin qubits in graphene quantum dots. Nat. Phys., 3, P. 192–196 (2007).

3. Guclu A., Potasz P., Hawrylak P. Electric-field controlled pin in bilayer triangular graphene quantum dots. Phys. Rev. B, 84, P. 035425 (2011).

4. Ritter K.A., Lyding J.W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater., 8, P. 235–242 (2009).

5. Pan D., Zhang J., Li Z., Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater., 22, P. 734–738 (2010).

6. Shen J., Zhu Y., et al. Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun., 47, P. 2580–2582 (2011).

7. Zhang Z.Z., Chang K. Tuning of energy levels and optical properties of graphene quantum dots. Phys. Rev. B, 77, P. 235411 (2008).

8. Gupta V., Chaudhary N., et al. Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc., 133, P. 9960–9963 (2011).

9. Liu R., Wu D., Feng X., Mullen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc., 133, P. 15221–15223 (2011).

10. Yan X., Li B., Li L-S. Colloidal graphene quantum dots with well-defined structures. Acc. Chem. Res., DOI: 10.1021/ar300137p.

11. Tang L., Ji R., et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 6, P. 5102–5110 (2012).

12. Li L., Wu G., et al. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 5, P. 4015–4039 (2013).

13. Zhou X., Zhang Y., et al. Photo-Fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano, 6, P. 6592–6599 (2012).

14. Dong Y., Chen C., et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem., 22, P. 8764–8766 (2012).

15. M. Zhang, L. Bai, et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem., 22, P. 7461–7467 (2012).

16. Lin L., Zhang S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun., 48, P. 10177–10179 (2012).

17. Chen S., Liu J.-W., et al. Unusual emission transformation of graphene quantum dots induced by selfassembled aggregation. Chem. Commun., 48, P. 7637–7639 (2012).

18. Razbirin B.S., Sheka E.F., et al. Enhanced Raman scattering provided by fullerene nanoclusters. JETP Lett., 87, P. 133–139 (2008).

19. Razbirin B.S., Sheka E.F., et al. The nature of enhanced linear and nonlinear optical effects in fullerenes in solution. JETP, 108, P. 738–750 (2009).

20. Razbirin B.S., Sheka E.F., et al. Shpolski effect in optical spectra of frozen solutions. Phys. Sol. State, 51, P. 1315–1319 (2009).

21. Sheka E.F., Razbirin B.S., et al. Fullerene-cluster amplifiers and nanophotonics of fullerene solutions. J. Nanophoton., 3, P. 033501 (2009).

22. Witten T.A. Polymer solutions: A geometric introduction. In Soft Matter Physics. Eds. M. Daoud and C.E. Williams. Springer-Verlag, Berlin Heidelberg, 1999, P. 261–288.

23. Gouyet J.-F. Physics and Fractal Structures. Masson Springer: Paris/New York, 1996.

24. Park S., An J., et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett., 9, P. 1593–1597 (2009).

25. Hamilton C.E., Lomeda J.R., et al. High-yield organic dispersions of unfunctionalized graphene. Nano Lett., 9, P. 3460–3462 (2009).

26. Rozhkova N.N., Yemel’yanova G.I., et al. From stable aqueous dispersion of carbon nanoparticles to the clusters of metastable shungite carbon. Glass Phys. Chem., 37, P. 613–618 (2011).

27. Shpol’skii E.V. New data on the nature of the quasilinear spectra of organic compounds. Phys.-Uspekhi, 6, P. 411–427 (1963).

28. Heritage J.P., Glass A.M. Nonlinear optical effects. In Surface Enhanced Raman Scattering. Eds. R.K.Chang and F.E.Furtak. NY and London: Plenum Press. 1982, P. 391–412.

29. Sheka E.F. Nanophotonics of fullerene. 1. Chemistry and medicine. Nanosci. Nanothechn. Lett., 3, P. 28–33 (2011).


Review

For citations:


Razbirin B.S., Rozhkova N.N., Sheka E.F., Nelson D.K., Starukhin A.N., Goryunov А.S. Spectral properties of shungite quantum dots. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(2):217–233.

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)