Localized states and storage of optical information under the qubit-light interaction in micro-size cavity arrays
Abstract
We suggest the model of lattice low branch (LB) polaritons based on the array of weakly coupled microsize cavities, each containing a small but macroscopic number of two-level systems (qubits). We reveal various dynamical regimes, such as diffusive, self-trapped, breathing and solitonic for polariton wave packet propagation under tight-binding approximation. We focus our attention on the bright polariton soliton formation in a high quality cavity array emerging due to two-body polariton-polariton scattering processes that take place at each cavity under the qubit-light interaction. A physical algorithm for the spatially distributed storage of optical information where various dynamical LB polariton soliton states are used is proposed. This algorithm can be realized with the help of manipulating group velocity of a polariton soliton in the cavity array and obtained by smooth variation of qubit-light detuning.
About the Authors
E. S. SedovRussian Federation
Gorky Street 87, RU-600000, Vladimir
S. M. Arakelian
Russian Federation
Gorky Street 87, RU-600000, Vladimir
A. P. Alodjants
Russian Federation
Gorky Street 87, RU-600000, Vladimir
100 Novaya str., Skolkovo, Moscow region, 143025
References
1. C. Simon, M. Afzelius, J. Appel, et al. Quantum memories. Eur. Phys. J. D, 58, P. 1–22 (2010).
2. N. S. Ginsberg, S. R. Garner and L. V. Hau. Coherent control of optical information with matter wave dynamics. Nature, 445, P. 623–626 (2007).
3. A. I. Lvovsky, B. C. Sanders and W. Tittel. Optical quantum memory. Nature Phot., 3, P. 706–714 (2009).
4. K. Hammerer, A. S. Sorensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82, P. 1041–1093 (2010).
5. M. Fleischhauer and M. D. Lukin. Quantum memory for photons: Dark-state polaritons. Phys. Rev. A, 65, P. 022314 (2002).
6. A. P. Alodjants, S. M. Arakelian, and A. Yu. Leksin. Storage of quantum optical information based on the intracavity polaritons under the BoseEinstein Condensation conditions. Laser Physics, 17, P. 1432–1440 (2007).
7. A. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 303, P. 2–30 (2003); ibid D. Jaksch, P. Zoller. The cold atom Hubbard toolbox. 315, P. 52–79 (2005).
8. L. Jiang, G. K. Brennen, A. V. Gorshkov, et al. Anyonic interferometry and protected memories in atomic spin lattices. Nature Phys., 4, P. 482–488 (2008); A. J. Daley, J. Ye, and P. Zoller. State-dependent lattices for quantum computing with alkaline-earth-metal atoms. Eur. Phys. J. D, 65, P. 207–217 (2011).
9. A. Tomadin and R. Fazio. Many-body phenomena in QED-cavity arrays. J. Opt. Soc. Am. B, 27, P. A130–A136 (2010); M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio. Effective Spin Systems in Coupled Microcavities. Phys. Rev. Lett., 99, P. 160501 (2007).
10. S.-C. Lei and R.-K. Lee. Quantum phase transitions of light in the Dicke-Bose-Hubbard model. Phys. Rev. A, 77, P. 033827 (2008).
11. D. G. Angelakis, M. F. Santos, and S. Bose. Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A, 76, P. 031805(R) (2007).
12. C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, 673 p. (1996).
13. H. Deng, G. Weihs, D. Snoke, et al. Polariton lasing vs. photon lasing in a semiconductor microcavity. PNAS, 100, P. 15318–15323 (2003).
14. A. Amo, S. Pigeon, D. Sanvitto, et al. Polariton Superfluids Reveal Quantum Hydrodynamic Solitons. Science, 332, P. 1167–1170 (2011).
15. B. Nelsen, R. Balili, D. W. Snoke, et al. Lasing and Polariton Condensation: Two Distinct Transitions in GaAs Microcavities with Stress Traps. J. Appl. Phys., 105, P. 122414 (2009).
16. M. Sich, D. N. Krizhanovskii, M. S. Skolnick, et al. Observation of bright polariton solitons in a semiconductor microcavity. Nat. Photon., 6, P. 50–55 (2012).
17. A. Trombettoni and A. Smerzi. Discrete Solitons and Breathers with Dilute Bose-Einstein Condensates. Phys. Rev. Lett., 86, P. 2353–2356 (2001).
18. J.-J. Wang, A.-X. Zhang, K.-Zh. Zhang, J. Ma, and J.-K. Xue. Two-component Bose-Einstein condensates in D-dimensional optical lattices. Phys. Rev. A, 81, P. 033607 (2010); A.-X. Zhang and J.-K. Xue. Coherent matter waves of a dipolar condensate in two-dimensional optical lattices. Phys. Rev. A, 82, P. 013606 (2010).
19. A. P. Alodjants, I. O. Barinov, and S. M. Arakelian. Strongly localized polaritons in an array of trapped two-level atoms interacting with a light field. J. Phys. B, 43, P. 095502 (2010); E. S. Sedov, A. P. Alodjants, S. M. Arakelian, Y. Y. Lin, and R.-K. Lee. Nonlinear properties and stabilities of polaritonic crystals beyond the low-excitation-density limit. Phys. Rev. A, 84, P. 013813 (2011).
20. I-H. Chen, Y. Y. Lin, Y.-C. Lai, et al. Solitons in cavity-QED arrays containing interacting qubits. Phys. Rev. A, 86, P. 023829 (2012).
21. M. Notomi, E. Kuramochi, and T. Tanabe. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Phot., 2, P. 741–747 (2008); K. Hennessy, A. Badolato, M. Winger, et al. Quantum nature of a strongly coupled single quantum dotcavity system. Nature, 445, P. 896–899 (2007).
22. Q. J. Wanga, C. Yan, N. Yu, et al. Whispering-gallery mode resonators for highly unidirectional laser action. PNAS, 107, P. 22407–22412 (2010).
23. F. A. Zwanenburg, A. S. Dzurak, A. Morello, et al. Silicon quantum electronics. Rev. Mod. Phys., 85, P. 961–1019 (2012).
24. A. Szameit, Th. Pertsch, S. Nolte, A. Tunnermann, and F. Lederer. Long-range interaction in waveguide¨ lattices. Phys. Rev. A, 77, P. 043804 (2008).
25. N. Cody Jones, R. Van Meter, A. G. Fowler, et al. Layered Architecture for Quantum Computing. Phys. Rev. X, 2, P. 031007 (2012).
26. C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg. Towards a picosecond transform-limited nitrogenvacancy based single photon source. Opt. Express, 16, P. 6240–6250 (2008); S. Castelletto, J. P. Harrison, L. Marseglia, et al. Diamond-based structures to collect and guide light. New J. of Phys., 13, P. 025020 (2011).
27. A. Dantan, J. Cvilinski, M. Pinard and Ph. Grangier. Dynamics of a pulsed continuous-variable quantum memory. Phys. Rev. A, 73, P. 032338 (2006).
28. A. Trombettoni, A. Smerzi, and P. Sodano. Observable signature of the Berezinskii-Kosterlitz-Thouless transition in a planar lattice of Bose-Einstein condensates. New J. of Phys., 7, P. 57 (2005).
Review
For citations:
Sedov E.S., Arakelian S.M., Alodjants A.P. Localized states and storage of optical information under the qubit-light interaction in micro-size cavity arrays. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(2):234–248.