Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Thermodynamic instability of compound and formation of nanosized particles nearby the critical point of phase generating media

Abstract

An analysis is presented for the possibility of metal dispersion, driven by the development of thermodynamic instabilities of its physical state in the vicinity of the critical point in an electrical explosion of conductors (EEC). A new geometrical configuration of conductors, arranged in a thin-walled cylindrical shell on a rigid dielectric cylinder with axially guided, internal return current is proposed. This constrains the part played by instabilities of non-thermodynamic origin and provides the required power density distributed uniformly in the conductor. For metals of the aluminum and copper type, the rates of heating have been estimated, which ensure homogeneous vaporization as the key factor governing the mechanism of liquid metal dispersion during the development of thermodynamic instabilities in the material. Directions in which magnetohydrodynamic (MHD) modeling of high-power electrical discharge in EEC should be pursued in the development of optimal regimes for energy injection into the conductor are outlined. Processes governing condensation of explosion products in an aqueous environment in the case of the particles being electrically charged and involved in chemical interaction with supercritical fluids have been analyzed. The method of synthesis proposed will eventually permit the production of oxide nanoparticles which differ from nanoparticles of the same oxides synthesized in electrical discharge in air and other oxygen-containing gas media, as well as in hydrothermal synthesis employed in its classical methodological implementation.

About the Authors

A. N. Kovalenko
Ioffe Physical Technical Institute of RAS
Russian Federation

Saint Petersburg



N. V. Kalinin
Ioffe Physical Technical Institute of RAS
Russian Federation

Saint Petersburg



References

1. Nairne E. Electrical experiments by Mr. Edward Nairne. Phil. Transact. of Royal Soc., London, 64, P. 79–89 (1774).

2. Faraday M. Division by the leyden deflagration. Proc. Royal Inst., 8, P. 356 (1857).

3. Richardson W.H. Bibliography Exploding-Wire Phenomena. Report No SCR-53. Sandia Corporation, Albuquerque, New Mexico (1958).

4. Exploding Wires. Plenum Press, N.Y., Vol. 1 (1959).

5. Exploding Wires. Plenum Press, N.Y., Vol. 2 (1964).

6. Chace W.G. Exploding Wires. Phys. Today. 17(8), P. 19 (1964).

7. Exploding Wires. Plenum Press, N.Y., Vol. 3 (1965).

8. Chace W.G. and Watson E.M. Bibliography of the Electrically Exploded Conductor Phenomenon. Supplement No.1. APCRL – 65 - 384. Commerce Department, Springfield, Virginia (1965).

9. Abramova K.B., Valickij V.P., VandakurovYu.P. and etc. Magnetohydrodynamic instability at the electric blast. Doklady Akademii Nauk (Proceedings of the USSR Academy of Sciences), 167(4), P. 778–781 (1966), (in Russian).

10. Exploding Wires. Plenum Press, N.Y., Vol. 4 (1968).

11. Bennett F.D. High-temperature exploding wires. Progress in high-temperature physics and chemistry. Pergamon Press, N.Y., Vol. 2, P. 1–63 (1968).

12. Bennett F.D., Kahl G.D. Vaporization waves in metals. Exploding Wires, P. 1–25 (1964).

13. Bennett F.D., Burden H.S., Shear D.D. Expansion of superheated metals. J. Appl. Phys., 45(8), P. 3429– 3438 (1974).

14. Martynyuk M.M. Role of evaporation and boiling of liquid metal in the process Explorer electric explosion. Zhurnal Tekhnicheskoi Fiziki (Technical Physics), 44(6), P. 1262–1270 (1974), (in Russian).

15. Abramova K.B., Zlatin N.A., Peregud B.P. Magnetohydrodynamic instability of liquid and solid conductors. Destruction of conductors by an electric current. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 69(6), P. 2007–2022 (1975), (in Russian).

16. Pavlov A.P. Boil metals, heated electric shock. Thermal fluid analysis. Sverdlovsk, Ufa branch of USSR cademy of science, P. 20–24 (1975), (in Russian).

17. Iskoldskij A.M., Pinus V.K., EpelbaumYa.G. Presented the electric explosion of conductors. Sustainability of the phase transformation. IAE, Novosibirsk, (1976). Preprint No. 32, IAE Sibirian branch of USSR academy of science (in Russian).

18. Iskoldskij A.M., Pinus V.K., Epelbaum Ya.G. Presented the electric explosion of conductors. Thermal instability of boundaries of the phase. Novosibirsk, IAE, 1976. Preprint No. 41, IAE Sibirian branch of USSR academy of science (in Russian).

19. Martynyuk M.M. Fuze destruction of metal powerful stream of electromagnetic radiation. Technical Physics, 46(4), P. 741–745 (1976), (in Russian).

20. Burtsev V.A., Kalinin N.V., Litunovskij V.N. Electric explosion of conductors. Review of OK-17. EFAI, Leningrad (1977), 120 p. (in Russian).

21. Iskoldskij A.M., Pinus V.K., Epelbaum Ya.G. Presented the electric explosion of conductors. Magnetohydrodynamic and thermal instability. IAE, Novosibirsk, 1977. Preprint No. 47, IAE Sibirian branch of USSR academy of science (in Russian).

22. Martynyuk M.M. Phase blast metastable liquid. Fizika Goreniya i Vzryza (Combustion, Explosion, and Shock Waves), 2, P. 213–229 (1977), (in Russian).

23. Burtsev V.A., Dubyanskiy V.A., Egorov N.P. et al. Study of electric explosion cylindrical foils. I. electrical explosion foils. Zhurnal Tekhnicheskoi Fiziki (Technical Physics), 48(7), P. 1419–1427 (1978), (in Russian).

24. Lebedev S.V. About the electric explosion mechanism of metal. Teplofizika Vysokikh Temperatur (High Temperature), 18(6), P. 273–279 (1980), (in Russian).

25. Burtsev V.A., Bezdol0nyj A.M., DubyanskiyV.A..etc. Study of electric explosion cylindrical foils. III. Current divergent level. Zhurnal Tekhnicheskoi Fiziki (Technical Physics), 50(6), P. 1216–1226 (1980), (in Russian).

26. Kalinin N.V. Kinetics of vaporization at the electric explosion of conductors. NIIEFA; Leningrad, 1981, 13 p. Preprint of NIIEFA, P-K-0518, Efremov Research Institute for electrical-physical equipment (in Russian).

27. Lebedev S.V. The disappearance of metal conductivity at electrical explosion and development of macroscopic inhomogeneities along the exploding wire. Teplofizika Vysokikh Temperatur (High Temperature), 19(6), P. 301–308 (1981), (in Russian).

28. Dorovskij V.P., Iskol0dskij A.M., Romensky, E.I. Dynamics of Pulsed electric current and the metal heating conductors/explosion. Prikladnaya Mekhanika i Tekhnicheskaya Fizika (Journal of Applied Mechanics and Technical Physics), 4(140), P. 10–25 (1983), (in Russian).

29. Stolovich N.N. Elektro-explosion energy converters. Nauka i Tekhnika, Minsk (1983), (in Russian).

30. Ivanenkov G.V., Samokhin A.I. Nanosecond burst of procrastination in the vacuum diode mosad is an accelerator. FIAN, Moscow (1984). /Preprint FIAN No. 80 (in Russian).

31. Lebedev S.V., Savvatimskii A.I. Metals during rapid heating by dense current. Sov. Phys. Usp., 27, P. 749–771 (1984).

32. Krivickij E.V. Dynamics the electric explosion in liquid. Naukova Dumka, Kyiv (1986), (in Russian).

33. Burtsev V.A., Kalinin N.V., Lucinschi A.V. Electric explosion of conductors and its application of electrophysical installations. Energoatomizdat, Moscow (1990), 288 p. (in Russian).

34. Sedoy V.S., Valevich V.V., Gerasimova N.N. Synthesis of highly dispersed powders method of electric explosion in Gaza with a pressure. Fizika I Khimia Obrabotki Materialov (Physics and Chemistry of Materials Treatment), 4, P. 92–95 (1999), (in Russian).

35. Vorobjev V.S., Eronin A.A., Malyshenka S.P. Phase blast conductor. High Temperature, 39(1), P. 97– 103 (2001).

36. Tkachenko S.I., Hiˆsenko K. V., Vorobjev V.S., etc. Metastable state of liquid metal electrical blast. High Temperature, 39(5), P. 674–687 (2001).

37. Oreshkin V.V., Sedoj V.S., Chemezova L.I. Electric explosion delay for nano-sized powders. Prikladnaya Fizika (Applied Physics), 3, P. 94–102 (2001), (in Russian).

38. Volkov A.A., Grebnev E.V., Dydykin P.S., etc. Electrical explosion of a wire by microsecond pulses in a longitudinal magnetic field. Technical Physics, 47(5), P. 628–633 (2002).

39. Pavlov P.A. Dinamic speaker effervescence strongly overheated liquids. Ekaterinburg, Ural branch of the USSR Academy of Sciences (1988), (in Russian).

40. Ilyin A.P. Development electroexplosive technologies in production of ceramic Nanopowders high voltage in Research Institute of Tomsk Polytechnic University. Izvestiya TPU (Bulletin of the Tomsk Polytechnic University), 306(1), P. 133–139 (2003), (in Russian).

41. Ivanenkov G.V., Pikuz S.A., Shelkovenko T.A. et al. Review on modeling of processes of electric explosion of thin metal wires. Part 1. The basic processes of electric explosion of conductors in a vacuum. FIAN, Moscow (2004), 26 p. Preprint FIAN No 9 (in Russian).

42. Ivanenkov G.V., Pikuz S.A., Shelkovenko T.A. et al. Review on modeling of processes of electric explosion of thin metal wires. Part 2. The physical properties of substances with high energy density in places through the metal wires. FIAN, Moscow (2004), 30 p. Preprint FIAN No 10 (in Russian).

43. Kuskova N.I., Baklar0 V.Yu., Khainatskii S.A. Obtaining Ultrafine Metal Powders under Electric Explosion of Conductors in Liquid: Part III. The Optimum Mode for Explosion of Conductors in Gases; Comparison with Explosion in Liquid. Surface Engineering and Applied Electrochemistry, 45(5), P. 382– 386 (2009).

44. Adamian Yu.E., Reznichenko P.V., Shneerson G.A. High-energy radiation generated during electric explosion of a conductor in a longitudinal magnetic field. Technical Physics Letters, 32(4), P. 317–319 (2006).

45. Kortkhondjia V.P. On the wire burst in water. Technical Physics, 51(12), P. 1636–1638 (2006).

46. Rousskikh A.G., Oreshkin V.I., Labetsky A.Yu., Chaikovsky S.A., Shishlov A.V. Electrical explosion of conductors in the high-pressure zone of a convergent shock wave. Technical Physics, 52(5), P. 571–576 (2007).

47. Kotov Yu.A., Ivanov V.V. Powder nanotechnology to create functional materials and devices for electrochemical energy. Vestnik Rossiiskoi Akademii Nauk (Herald of the Russian Academy of Sciences), 78(9), P. 777–787 (2008), (in Russian).

48. Belko V.O., Emelyanov O.A Nanosecond electric explosion of thin aluminum films. Technical Physics Letters, 35(9), P. 861–864 (2009).

49. Grigoriev A.N., Pavlenko A.V. Pressure at the electric explosion metal foils. Technical Physics Letters, 35(9), P. 865–868 (2009).

50. Bulgakov A.V., BulgakovaN.M., Burakov I.M., etc. Synthesis of nanoscale materials under the influence of powerful streams of energy on substance. Institute of Thermophysics, Siberian branch of Russian Academy of science, Novosibirsk (2009), 462 p. (in Russian).

51. Hajnackij S.A. Conditions for realization of an optimum regime of the electric explosion of conductors in liquid media. Technical Physics Letters, 35(4), P. 299–301 (2009).

52. Volkov N.B., Meyer A.E., Sedoj V.S. etc. Mechanisms of metallic nanoparticle generation during an electric explosion of conductors. Technical Physics, 55(4), P. 509–513 (2010).

53. Doney R.L., Vunni G.B., Niederhaus J.H. Experiments and Simulations of Exploding Aluminum Wires: Validation of ALEGRA-MHD. ARL-NR-5299. SAND (2010), 6028 p.

54. Rashmita Das, Basanta Kumar Das, Rohit Shukla et al. Analysis of electrical explosion of wire systems for the production of nanopowder. Sadhana, 37(5), P. 629–635 (2012).

55. Vorobiev V.S., Malyshenka S.P., TkachenkoS.i., Fortov V.E. Than initiated blast conductor? Pis’ma v Zh. Eksp. Teor. Fiz. (JETP Letters) 75(8), P. 445–449 (2002), (in Russian).

56. Pikuz S.A., Tkachenko S.I., Barishpol’tsev D.V., Ivanenkov G.V., Mingaleev A.R., Romanova V.M., Ter-Oganes’yan A.E., Shelkovenko T.A. Interpreting experimental data on the electric explosion of thin wires in air. Technical Physics Letters, 33(8), P. 651–654 (2007).

57. Lev M.L., Mirzabekov A.M., OstrovskyYu.N., Peregoud B.P. Explorer, Evaporation exceeds MHD instabilities. Pis0ma v Zhurnal Tekhnicheskoi Fiziki (Technical Physics Letters), 4(14), P. 840–846 (1983), (in Russian).

58. Sedoj V.S. Direct receiving of nano-sized powders by electric explosion. Synthesis of nanoscale materials under the influence of powerful streams of energy on substance. Institute of Thermophysics (chapter 4, 15), Siberian branch of Russian Academy of science, Novosibirsk (2009), 462 p. (in Russian).

59. Lev M.L., Peregoud B.P. Development Time upholstering MHD instability of liquid conductors under its own power. Zhurnal Tekhnicheskoi Fiziki (Technical Physics), 47(10), P. 2116–2121 (1977), (in Russian).

60. Skripov V.P. Metastable liquid. Nauka, Moscow (1972), (in Russian).

61. Skripov V.P., Skripov A.V. Spinodal decomposition (phase transitions via unstable states). Sov. Phys. Usp., 22(6), P. 389–410 (1979).

62. Skripov V.P., Faysullin M.Z. Phase transitions Crystal-liquid-vapor and thermodynamic similarity. PHYSMATHLIT, Moscow (2003), 160 p. (in Russian).

63. Rukhadze A.A. The electric explosion of conductors. Mir, Moscow, 1965, 360 p. (in Russian).

64. Kotov Yu.A., Bagazeev A.V., Beketov I.V. etc. Properties of nickel oxide nanopowders prepared by electrical explosion of a wire. Technical Physics, 50(10), P. 1279–1283 (2005).

65. Khishchenko K.V., Tkachenko S.I., Levashov P.R. The melting wave in a metal fast heated by a highpower current pulse. Technical Physics Letters, 32(2), P. 126–128 (2006).

66. Pavlenko A.V., Grigoriev A.N., Afanasyev V.V. etc. Pressure waves generated by a nanosecond electric explosion of a tungsten wire in water. Technical Physics Letters, 34(2), P. 129–132 (2008).

67. Rumer Yu.B., Rivkin M.Sh. Thermodynamics, statistical physics and kinetics. Nauka, Moscow (1977), 552 p. (in Russian).

68. Anisimov M.A. Investigations of critical phenomena in liquids. Sov. Phys. Usp., 18, P 722–744 (1974).

69. The physical encyclopedic dictionary. Ed. A.M. Prokhorov Soviet encyclopedia, Moscow (1988), (in Russian).

70. Physical encyclopedia, Vol. 5. Ed. A.M. Prokhorov. The great Russian encyclopedia, Moscow (1998), (in Russian).

71. Stanley M. Walas. Phase Equilibria in Chemical Engineering. University of Kansasand The C.W. Nofsinger Company Butterworth Publishers Boston. London. Sydney, Wellington. Durban. Toronto (1985), 304 p.

72. Landau L.D., Lifshitz M.E. Satistical physics. Nauka, Moscow (1964). (in Russian)

73. Braut P. Phase transitions. Mir, Moscow (1967), (in Russian).

74. Critical Phenomena Proceeding of conference on phenomena in the neighborhood of critical points. Washington, NBS Misc. Publ. 273 (1966) P. 1–242.

75. adanff L.. Scaling, universality and operator algebras. In: Phase Transitions and Critical Phenomena, C. Domb, M.S. Green (eds.), Vol. 5a, Academic Press, New York (1976), P 1–34.

76. Widm . Equation of state in neighborhood of the critical point. J. Chem. Phys., 43(11), P. 255–262 (1965).

77. Kadanoff L.P. Scaling Laws for Ising Models Near Tc. Physics, 2, P. 263–272 (1966).

78. Patashinskii A.Z., Pokrovskii V.L. Behavior of ordered systems near the transition point. Journal of Experimental and Theoretical Physics, 23(2), P. 292–297 (1966).

79. Patashinskij A.Z., Pokrovskii V.L. The theory of phase transitions. Nauka, Moscow (1982), 381 p. (in Russian).

80. Liu A.J., Fisher M.E. The three-dimensional Ising model revisited numerically, Physica A, 156, P. 35–76 (1989).

81. Guida R., Zinn-Justin. J. Critical exponents of the N-vector model. J. Phys. A.: Math. Gen. 31, P. 8103–8121 (1998).

82. Onsager L. Crystal Statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3,4), P. 117–149 (1944).

83. Kaufman B., Onsager L. Crystal Statistics. III. Short-Range Order in a Binary Ising Lattice. Phys. Rev. 76(8), P. 1244–1252 (1949).

84. Wilson K.G. Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture. Phys. Rev. B, 4(9), P. 3174–3183 (1971).

85. Wilson K.G., Fisher M.E. Critical Exponents in 3.99 Dimensions. Phys. Rev. Lett., 28(4), P. 240–243 (1972).

86. Wilson , Kogut J. The renormalization group and the ε-expansion. Physics Reports, 12(2), P. 75–199 (1974).

87. Anisimov, M.A. Critical phenomena in liquids and liquid crystal. Nauka, oscow (1987), (in Russian).

88. Fisher M. The nature of the critical state. Moscow (1986), (in Russian).

89. Ma Shang-keng. The modern theory of critical phenomena. Moscow (1986), 582 p.

90. Ivanov D.Y. Critical phenomena in clean liquids. Vestnik SibSUTI 3, P. 94–104 (2009), (in Russian).

91. Ivanov D.Y. Critical behavior of nonideal systems. PHYSMATHLIT, Moscow (2003), 248 p. (in Russian).

92. Ginzburg V.L. Several comments on the phase transitions of the second kind and microscopic theory of ferroelectric. Fizika Tverdogo Tela (Physics of the Solid State), 2(9), P. 2031–2043 (1960), (in Russian).

93. Ivanov D. Yu. Critical phenomena in clean liquids. Vestnik SibSUTI 3, P. 94-104 (2009), (in Russian).

94. Jsephsn B.D. Equation of state near the critical point. J. Phys. C: Solid State Phys, 2(7), P. 1113–1116 (1969).

95. Schofield P. Parametric representation of the equation of state near the critical point. Phys. Rev. Lett., 22(12), P. 606–609 (1969).

96. Kudryavtseva A.V., Rykov A.V., Rykov S.V. Single nonanalityc equation of perfluoropropane state satisfiing a major theory of critical phenomena. Vestnik of International Academy of Refrigeration, 3, P. 22–26 (2013), (in Russian).

97. Migdal A.A. Equation of State of near critical point. Zhurnal Eksperimental’noˇi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 62(4), P. 1559–1573 (1972), (in Russian).

98. Benedek G.B. Optical mixing spectroscopy, with applications to problem in physics, chemistry, biology and engineering. Polarisation, matiereetrayonnement. Presses Universitaires de France, Paris (1969), p. 49.

99. Prigogine I., Kondepudi D. Modern Thermodynamics. / Ed. Odile Jacgb. John Wiley & Sons: Chichester, New York, Weinheim, Brisbane, Toronto, Singapore (1999).

100. Frankel Ya.I. Kinetic theory of liquids. Nauka, Leningrad (1975), 562 p. (in Russian).

101. Bennett F. Wave of evaporation in metals. Physics of high energy densities. Mir, Moscow (1974), (in Russian).

102. Oreshkin V. I., Baksht R. B., Labetsky A. Yu., Rousskikh A. G., Shishlov A. V., Levashov P. R., Khishchenko K. V., Glazyrin I. V. Study of metal conductivity near the critical point using a microwire electrical explosion in water. Technical Physics, 49(7), P. 843–848 (2004).

103. KotovYu.A., Jaworski N.A. Study particles formed at the electric explosion of conductors. Fizika I Khimia Obrabotki Materialov (Physics and Chemistry of Materials Treatment), 4, P. 24–28 (1978), (in Russian).

104. Andreev S.V., Orlov S.N., Samokhin A.N. Modeling of explosive boiling under Pulse-Laser heating. Effect of laser radiation on the absorbing medium. Nauka, Moscow (2004), P. 127–148. (IOFAN, 60) (in Russian).

105. Rosenthal S.E., Desjarlais M.P., Spielman R.B. et al. MHD Modeling of Conductors at Ultrahigh Current Density. IEEE Trans. Plasma Sci., 28(5), P. 1427–1433 (2000).

106. Oreshkin V.I., Barengol0c S.A., Tchaikovsky S.A. Numerical calculation of the current specific action integral at the electrical explosion of wires. Technical Physics, 52(5), P. 642–650 (2007).

107. Sarry M.F. Thermodynamic theory of the equation of state of materials. Technical Physics, 43(10), P. 1137–1144 (1998).

108. Oreshkin V.I. Overheat instabilities in the electric explosion of wires. Technical Physics Letters, 35(1), P. 36–39 (2009).

109. Baksht R.B., Tkachenko S.I, Romanov V.M. etc. Stratification dynamics and the development of electrothermal instability at the wire explosion. Technical Physics, 58(8), P. 1129–1137 (2013).

110. Borisevich A. E., CherkasS.l. Effect of the conductor radius on the electric explosion dynamics: Magnetohydrodynamic simulation. Technical Physics, 57(10), P. 1380–1386 (2012).

111. Altshuler L.V., Kormer S.B., Bakanova A.A., Trunin R.F. The equation of state of aluminium, copper and lead to high pressure. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics). 38(3), P. 791–798 (1960), (in Russian).

112. Kormer S.B., Urlin V.D., Popova L.T. Interpolation equation of State and its application to the description of the experimental data on shock compression of metals. Fizika Tverdogo Tela (Physics of the Solid State), 3, P. 2131 (1961), (in Russian).

113. Altshuler L.V., Bakanova A.A., Trunin R.F. Drums isentropic and zero isotherm under high pressures. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki (Journal of experimental and theoretical physics), 42(1), P. 91–104 (1962), (in Russian).

114. Kormer S.B., Funtikov A.I., Urlin V.D., Komel’kov A.N. Dynamic compression of porous metals and equations of state with variable heat capacity at high temperatures. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 42(3), P. 686–702 (1962), (in Russian).

115. Kalitkin N.N., Kuzmina L.V. Curves cold compression at high pressures. Fizika Tverdogo Tela (Physics of the Solid State), 12, P. 2314 (1971), (in Russian).

116. Boissiere C., Fiorese G. Equation d0etat des metauxprenant en compte les changementsd0etat entre 300 et 200000 K pour toute compression appliation au cas du cuivre et de l’alluminium. Rev. Phys. Appl., 12(5), P. 857–872 (1977).

117. Altshuler L.V., Bushman A.V., Fortov V.E., Sharipdzhanov I.I. An semi empirical equation of metals state in the wider area of phase diagram. In: Chislennye metody mehaniki sploshnoy sredy (Numerical methods for continuum mechanics), 7(1), P. 5 (1976), (in Russian).

118. Altshuler L.V., Bushman A.V., Zhernokletov M.V., Zubarev V.N., Leont0ev A.A., Fortov V.E. Izoentropy and equation of state of metals under high energy densities. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 78(2), P. 741–760 (1980), (in Russian).

119. Bushman A.V., Gryaznov V.K., Canelle G.I., et al. The dynamics of condensed matter in intense pulsed exposures. Thermodynamic properties of materials at high temperatures and pressures. (Preprint/Department of the Institute of Chemical Physics of the USSR). OIHF, Chernogolovka (1983), 48 p. (in Russian).

120. Bushman A.V., Lomonosov I.V., Fortov V.E. Model full-range State equations of substances with high energy densities. (Preprint No. 6-287 / Institute of high temperatures of the USSR) IVTAN, Moscow (1989), 44 p. (in Russian).

121. Altshuler L.V., Brusnikin S.E., Kuzmenkov E.A. Isotherms and functions Gruˆnajzena 25 metals. Prikladnaya Mekhanika i Tekhnicheskaya Fizika (Journal of Applied Mechanics and Technical Physics), 1(161), P. 134–146 (1987), (in Russian).

122. Altshuler L.V., Brusnikin S.E. Simulation of high-energy processes and wide-ranging State equation of metals. Voprosy atomnoy nauki i tekhniki. Seriya: matematicheskoe modelirovanie fizicheskih processov (Problems of atomic science and technology. Series: mathematic modelling of fisical processes), 1, P. 3– 42 (1992), (in Russian).

123. Altshuler L.V., Brusnikin S.E. About determination of gruneisen parameter for strong unideal plasm. Teplofizika Vysokikh Temperatur (High Temperature), 27(1), P. 42 (1989), (in Russian).

124. Atzeni S., Caruzo A., and Pais V.A. Model equation-of-state for any material in condition relevant to ICF and to stellar interiors. Laser and Particle Beams, 4(3-4), P. 393–402 (1986).

125. Kolgatin S.N., Khachatur0yants A.V. Interpolation equation of state list of metals. Teplofizika Vysokikh Temperatur (High Temperature), 20(3), P. 477–451 (1982), (in Russian).

126. Basco M.M. Equation of state of metals in the approximation of the average ion. Teplofizika Vysokikh Temperatur (High Temperature), 23(3), P. 483–491 (1985), (in Russian).

127. Gathers G.R. Thermophysical properties of liquid copper and aluminum. Intern. J. Thermophysics, 4(3), P. 209–226 (1983).

128. Sapozhnikov A.T., Pershina A.V. Semi empirical equation of State of metals in a wide range of densities and temperatures. Voprosy atomnoy nauki i tekhniki. Seriya: Metodiki i programmy chislennogo resheniya zadach matematicheskoy fiziki (Problems of atomic science and technology. Series: methods and applications of numerical solution of problems of mathematical physics), 4(6), P. 47–56 (1979), (in Russian).

129. Karpov V.A., Fadeev A.P., Shpatakovskaja G.V. Calculation equations of state in laser fusion targets. (Preprint No. 147 / Keldysh Institute of applied mathematics Academy of sciences of USSR) IPM, Moscow (1982), 28 p. (in Russian).

130. Belarusian A.V. Model equations of State, taking into account evaporation, ion and fusion. Voprosy atomnoy nauki i tekhniki. Seriya Termoyaderniy sintez (Problems of atomic science and technology. Series: thermonuclear fusion), 1, P. 12-19 (1992), (in Russian).

131. Medvedev A.B. Modification model of van der Waals equation for dense states. Shock waves and extreme States. Nauka, Moscow (2000), 341 p. (in Russian).

132. Bespalov I.M., PolishchukA.Ya. Method of calculating the degree of ionization, thermal and electrical conductivity of Plasmas in a wide range of densities and temperatures. Pis0ma v Zhurnal Tekhnicheskoi Fiziki (Technical Physics Letters), 15(2), P. 4–8 (1989), (in Russian).

133. Bespalov I.M., Polishchuk A.Ya. Method of calculating transport coefficients of Plasmas in a wide range of parameters. (Preprint No. 1-257, USSR ACADEMY of SCIENCES, Institute of high temperatures). IVTAN, Moscow, 36 p. (in Russian).

134. Mott N.F., Jones H. The theory of the properties of metals and alloys. New York (1958), 326 p.

135. Zyryanov P.S. To the theory of electrical conductivity of metals. Zhurnal Eksperimental’no´ ˇi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 29(3), P. 333–338 (1955), (in Russian).

136. Keldysh L.V. Ionization in the Field of a Strong Electromagnetic Wave. Soviet Physics JETP, 20, P. 1307–1314 (1965).

137. Yermakov V.V., Kalitkin N.N. Electronic transport in dense plasma. Fizika Plazmy (Plasma Physics Reports), 5(3), P. 650–658 (1979), (in Russian).

138. Volkov N.B. Plasma conductivity model of metal. Zhurnal Tekhnicheskoi Fiziki (Technical Physics), 49(9), P. 2000–2002 (1979), (in Russian)

139. Burtsev V.A., Kalinin N.V. On electric conduction in the stage of proper explosion of conductors. Proceeding of 15th International Conference on High-Power Particle BEAMS St Petersburg, Russia, 2004 July 18-23, Efremov Scientific Research Institute of Electrophysical Apparatus, 830-833.

140. Burtsev V.A., Kalinin N.V. On electrical conductivity at the stage of the actual explosion of conductors. In: Physics of Extreme States of Matter. Chernogolovka city, 2005, 156-158 (in Russian).

141. Lee Y.T., More R.M. Electron conductivity model for dense plasmas. Phys. Fluids, 27(5), P. 1273–1286 (1984).

142. Likal0ter A.A. Conductivity degenerate gas quasi-atomic. Teplofizika Vysokikh Temperatur (High Temperature), 25(3), P. 424–429 (1987), (in Russian).

143. Likal0ter A.A. Gaseous metals. Sov. Phys. Usp., 35(7), P. 591–605 (1992).

144. Rolader G.E., Batteh J.H., Desai P.V. Comparison of partition function calculation for metal plasmas. J. Appl. Phys., 64(3), P. 1101–1107 (1988).

145. Vorobiev V.S., Rachel A.D. Numerical study of some modes of electric explosion of conductors. Teplofizika Vysokikh Temperatur (High Temperature), 28(1), P. 18–23 (1990), (in Russian).

146. Vorobiev V.S. Study of equilibrium liquid-vapor using interpolation equations of state. Teplofizika Vysokikh Temperatur (High Temperature), 33(4), P. 557–564 (1995), (in Russian).

147. Vorob0ev V.S., Malyshenko S.P. Phase equilibrium in a current-carrying liquid conductor in Z-pinch geometry. Journal of Experimental and Theoretical Physics. 84(6), P. 1098–1105 (1997).

148. Vorobiev V.S. On model description crystalline or liquid state. Teplofizika Vysokikh Temperatur (High Temperature), 34(3), P. 397–406 (1996), (in Russian).

149. Tkachenko S.I. Simulation of an early stage of a conductor’s electrical explosion. Technical Physics, 45(7), P. 950–952 (2000).

150. Rinker G.A. Systematic calculation of plasma transport coefficients for the Periodic Table. Phys. Rev. A, 37A(4), P. 1284–1297 (1988).

151. Bobrov V.B., Allahyarov E.A. To the calculation of the electrical conductivity of fully ionized plasma with arbitrary electron degradation. II. Liquid metal plasma. Teplofizika Vysokikh Temperatur (High Temperature), 31(3), P. 352–356 (1993), (in Russian).

152. Perrot F., Dharma-Wardama M.W. Equation of state and transport properties of multispecies plasma: Application to multiply ionized Al plasma. Phys. Rev. E, 52, P. 5352 (1995).

153. Silverstrelli P.L. No evidence of a metal–insulator transition in a dense aluminum: a fist principle study. Phys. Rev. B, 60(II), P. 16382 (1999).

154. Redmer R., Kuhbolt S. Transport coefficients for dense metal plasma. Phys. Rev. E. 62, P. 7191 (2000).

155. Apfelbaum E.M., Ivanov M.F. Calculation of transport coefficients with allowance for the chemical composition of a low-temperature high-density metal plasma. Plasma Physics Reports, 27(1), P. 76–81 (2001).

156. Apfelbaum E.M. Calculation of the electrical conductivity of liquid aluminium, copper and molybdenum. High Temperature, 41(4), P. 466–471 (2003).

157. Fortov V.E., Leontjev A.A., Dremin A.N. Parameter estimation of the critical point. Teplofizika Vysokikh Temperatur (High Temperature), 13(5), P. 1072–1080 (1975), (in Russian).

158. Fortov V.E., Leontiev A.A. Kinetics of evaporation and condensation on metal expansion by uniform entropy conditions. Teplofizika Vysokikh Temperatur (High Temperature), 14(4), P. 711–717 (1976), (in Russian).

159. Romanov G.S., Smetannikov A.S. Numerical simulation of layer pulsed discharge. Pis0ma v Zhurnal Tekhnicheskoi Fiziki (Technical Physics Letters), 51(4), P. 678–685 (1981), (in Russian).

160. Bushman A.V., Romanov G.S., Smetannikov A.S. Theoretical Modelling of the initial layer of pulse discharge in the light of the State equation of Explorer. Teplofizika Vysokikh Temperatur (High Temperature), 22(5), P. 849–856 (1984), (in Russian).

161. Romanov G.S., Smetannikov A.S. Numerical simulation of pulsed discharge with the layer of energy transfer radiation. Zhurnal Tekhnicheskoi Fiziki (Technical Physics), 52(9), P. 1756–1761 (1982), (in Russian).

162. Romanov G.S., Smetannikov A.S. Modeling of flat high current digits. Calculation of discharge in the MHD approximation. Teplofizika Vysokikh Temperatur (High Temperature), 28(2), P. 209–215 (1990), (in Russian).

163. Dul0nev G.N., Novikov V.V. Thermal mode of a lamp operating in the pulse. Journal of Engineering Physics and Thermophysics, 41(1), P. 757–762 (1981).

164. Grigoriev I., E.Z. Mejlihova (editors). Physical Quantities. Guide. Energoatomizdat, oscow (1991). 1232 p.(in Russian)

165. Kotov Y.A., Azarkevich E.I., Medvedev A.I., Murzakaev A.M., Kuznetsov V.L., Samatov O.M., Demina T.M., Timoenkova A.K., Stoltz A.K. Nanopowders of oxides of iron, the electric wire explosion. Inorganic Materials, 43(6), P. 633–637 (2007).

166. Kotov Yu.A. Electric wire explosion-method of obtaining weal agregated powders. Rossiiskie Nanotekhnologii (Nanotechnologies in Russia), 4(1-2), P. 40–51 (2009), (in Russian).

167. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultradispersed zirconium dioxide as influenced by conditions of hydrothermal synthesis. Russian Journal of General Chemistry, 69(8), P. 1219–1222 (1999).

168. Almjasheva O.V., Gusarov V., Danilevich Ya.B., Kovalenko A.N., Ugolkov V.L. Nanocrystals of ZrO2 as sorption heat accumulators. Glass Physics and Chemistry, 33(6), P. 587–589 (2007).

169. Almjasheva O.V., Ugolkov V.L, Gusarov V.V. Thermochemical analysis of desorption and adsorption of water on the surface of zirconium dioxide nanoparticles. Russian Journal of Applied Chemistry, 81(4), P. 609–613 (2008).

170. Almjasheva O.V., Vlasov E.A., Khabenskii V.B., Gusarov V.V. Thermal stability and catalytic properties of the composite amorphous Al2O3-nanocrystals ZrO2. Russian Journal of Applied Chemistry, 82(2), P. 217–221 (2009).

171. Almjasheva O.V., Antonov U.F., Gusarov V.V., Danilevich Y.B., Didenko A., Kovalenko A.N. Dispersion of powdered coal with an oxide catalysts in water, as the liquid fuel. Proceedings of Photonics and Optoinformatike. SpbSU ITMO, St. Petersburg, 2010, P. 168–186 (in Russian).

172. Almjasheva O.V., PostnovA.Yu., Maltseva N.V., Vlasov E.A. Thermostable catalysts for oxidation of hydrogen based on ZrO2–Al2O3 nanocomposite. Nanosystems: Physics, Chemistry, Mathematics, 3(6), P. 75–82 (2012), (in Russian).

173. Almjasheva O.V, Gusarov V.V. Nucleation in media in which nanoparticles of another phase are distributed. Doklady Physical Chemistry, 424(2), P. 43–45 (2009).

174. Almjasheva O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russian Journal of General Chemistry, 80(3), P. 385–390 (2010).

175. Rekhviashvili S. Sh., Kishtikova E. V. On the size dependence of the surface tension. Technical Physics, 56(1), P. 143–146 (2011).

176. Galkin A.A., Lunin V.V. Subcritical and supercritical water: a universal medium for chemical reactions. Rus. Chem. Rev., 74(1), P. 21–35 (2005).

177. Valyashko V.M. Phase equilibrium with supercritical fluids. Supercritical Fluids. Theory and practice, 1(1), P. 10–25 (2006), (in Russian).

178. Gorbaty J.E., Bondarenko G.V. Overcritical State water. Supercritical Fluids. Theory and practice, 2(2), P. 5-19 (2007), (in Russian).

179. Volmer M. Kinetics of new phase formation. Nauka, Moscow (1986), 208 p. (in Russian).

180. Kovalenko A.N. Limit possibilities of process intensification of energy conversion in nonequilibrium thermodynamic systems. Procceding of Two-phase Flow in Power Machines and Apparatus. Leningrad, Nauka (1991) (in Russian).

181. Kovalenko A.N. Regulation and thermodynamic stability of non-equilibrium processes of energy conversion of speed. Trudy CKTI, JSC, 281(2), (1996),(in Russian).

182. Schuster H.G. Deterministic Chaos. An Introduction. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 1985.

183. Feder J. Fractals. Plenum Press, New York (1988).

184. Shklovskii B.I., Efros A.L. Percolation theory and conductivity of strongly inhomogeneous media. Sov. Phys. Usp., 18, P. 845–862 (1975).

185. Dykhne A.M., Snarskii A.A., Zhenirovskii M.I. Stability and chaos in randomly inhomogeneous twodimensional media and LC circuits. Phys.Usp. 47, P. 821–828 (2004).

186. Ziman J.M. Models of Disorder. Cambridge Univ. Press, Cambridg (1979), 592 p.

187. Aranson I.S., Gaponov-Grekhov A.V., Rabinovitch M.M., Rogalsky A.V., Sagdeev R.Z. Lattice models in nonlinear dynamics of non-equilibrium environments. (Preprint of IAP AS USSR 163). Gorkij, 1987 (in Russian).

188. Sokolov I.M. Dimensionalities and other geometric critical exponents in percolation theory. Sov. Phys. Usp., 29, P. 924–945 (1986).

189. Mandelbrot B.B. Fractals: Form, Chance and Dimension. Freeman, San Francisco (1977), 365 p.

190. R´enji A. On a new axiomatic theory of probability. Acta Mathematica Hungaria, 6(3-4), P. 285–335 (1955).

191. Klimontovich Yu.L. Entropy and information of open systems. Phys. Usp., 42, P. 375–384 (1999).


Review

For citations:


Kovalenko A.N., Kalinin N.V. Thermodynamic instability of compound and formation of nanosized particles nearby the critical point of phase generating media. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(2):258–293.

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)