Quantum dynamics of hydrogen-like atom in one-dimensional box with oscillating walls
https://doi.org/10.17586/2220-8054-2015-6-6-767-772
Abstract
The quantum dynamics of a hydrogen-like atom confined in one-dimensional box with oscillating walls is studied. The description of the system is reduced to a one-dimensional Schr¨odinger equation for Coulomb potential with time-dependent boundary conditions, which is solved numerically. Using the obtained solution, the average kinetic energy and binding energies are calculated as a function of time. It is found that both the average kinetic energy and the binding energies are periodic in time with the period depending on the wall’s oscillation parameters. The probability density is also analyzed as a function of time and coordinate.
About the Authors
S. RakhmanovUzbekistan
100174, Tashkent
O. Karpova
Uzbekistan
100174, Tashkent
17. Niyazov Str., 100095, Tashkent
D. R. Rakhimboeva
Uzbekistan
100148, Tashkent
F. Khashimova
Uzbekistan
27 Janubiy str., Navoiy
D. Babajanov
Uzbekistan
17. Niyazov Str., 100095, Tashkent
References
1. M.F. Andersen, A. Kaplan, N. Friedman, N. Davidson. Stable islands in chaotic atom-optics billiards, caused by curved trajectories. J. Phys. B: At. Mol. Opt. Phys., 2002, 35, P. 2183-2190.
2. A. Kaplan, N. Friedman, M. Andersen, N. Davidson. Observation of Islands of Stability in Soft Wall Atom-Optics Billiards. Physics Letters V., 2001, 87 Nu. 27.
3. B. Rohwedder. Quantum billiard atom optics. Europhys. Lett., 2002, 60(4), P. 505-511.
4. S.W. Doescher, M.H. Rice. Infinite Square-Well Potential with a Moving Wall., 1969, Am. J. Phys., 37, P. 1246.
5. A. Munier, J.R. Burgan, M. Feix, E. Fijalkow. Schr¨odinger equation with time-dependent boundary conditions. J. Math. Phys., 1981, 22, P. 1219.
6. J.V. Jose, R. Gordery. Study of a quantum fermi-acceleration model. Phys. Rev. Lett., 1986, 56, P. 290.
7. P. Seba. Quantum chaos in the Fermi-accelerator model. Phys. Rev. A, 1990, 41, P. 2306.
8. Pinder D.N. The contracting square quantum well. Am. J. Phys., 1990, 58, P. 54.
9. M. Razavy. Time-dependent harmonic oscillator confined in a box. Phys. Rev. A, 1991, 44, P. 2384.
10. P. Pereshogin, P. Pronin. Effective Hamiltonian and Berry phase in a quantum mechanical system with time dependent boundary conditions. Phys. Lett. A, 1991, 156, P. 12{16.
11. C. Scheininger, M. Kleber. Quantum to classical correspondence for the Fermi-acceleration model. Physica D, 1991, 50, P. 391{404.
12. A.J. Makowski, S.T. Dembinski. Exactly solvable models with time-dependent boundary conditions. Phys. Lett. A, 1991, 154, P. 217{220.
13. A.J. Makowski. Two classes of exactly solvable quantum models with moving boundaries. J. Phys. A: Math. Gen., 1992, 25, P. 3419.
14. B. Jaramillo, R.P. Mart´ınez-y-Romero, H.N. N´u~nez-Y´epez, A.L. Salas-Brito. On the one-dimensional Coulomb problem. Physics Letters A, 2009, 374, P. 150-153.
15. F. Dom´ınguez-Adame, A. Rodr´ıguez. A one-dimensional relativistic sceened Coulomb potential. Physics Letters A, 1995, 198, P. 275{278.
16. K.D. Schotte, T.T. Truong. Phase transition of a one-dimensional Coulomb system. Phys.Rev. A, 1980, 22 Nu. 5.
17. F. Gesztesy. On the one-dimensional Coulomb Hamiltonian. J. Phys. A: Math. Gen., 1980, 13, P. 867{ 875.
Review
For citations:
Rakhmanov S., Karpova O., Rakhimboeva D.R., Khashimova F., Babajanov D. Quantum dynamics of hydrogen-like atom in one-dimensional box with oscillating walls. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):767-772. https://doi.org/10.17586/2220-8054-2015-6-6-767-772