Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Quantum dynamics of hydrogen-like atom in one-dimensional box with oscillating walls

https://doi.org/10.17586/2220-8054-2015-6-6-767-772

Abstract

The quantum dynamics of a hydrogen-like atom confined in one-dimensional box with oscillating walls is studied. The description of the system is reduced to a one-dimensional Schr¨odinger equation for Coulomb potential with time-dependent boundary conditions, which is solved numerically. Using the obtained solution, the average kinetic energy and binding energies are calculated as a function of time. It is found that both the average kinetic energy and the binding energies are periodic in time with the period depending on the wall’s oscillation parameters. The probability density is also analyzed as a function of time and coordinate.

About the Authors

S. Rakhmanov
National University of Uzbekistan
Uzbekistan

100174, Tashkent



O. Karpova
National University of Uzbekistan ; Turin Polytechnic University in Tashkent
Uzbekistan

100174, Tashkent

17. Niyazov Str., 100095, Tashkent



D. R. Rakhimboeva
Tashkent Transport College
Uzbekistan

100148, Tashkent



F. Khashimova
Navoiy State Mining Institute
Uzbekistan

27 Janubiy str., Navoiy



D. Babajanov
Turin Polytechnic University in Tashkent
Uzbekistan

17. Niyazov Str., 100095, Tashkent



References

1. M.F. Andersen, A. Kaplan, N. Friedman, N. Davidson. Stable islands in chaotic atom-optics billiards, caused by curved trajectories. J. Phys. B: At. Mol. Opt. Phys., 2002, 35, P. 2183-2190.

2. A. Kaplan, N. Friedman, M. Andersen, N. Davidson. Observation of Islands of Stability in Soft Wall Atom-Optics Billiards. Physics Letters V., 2001, 87 Nu. 27.

3. B. Rohwedder. Quantum billiard atom optics. Europhys. Lett., 2002, 60(4), P. 505-511.

4. S.W. Doescher, M.H. Rice. Infinite Square-Well Potential with a Moving Wall., 1969, Am. J. Phys., 37, P. 1246.

5. A. Munier, J.R. Burgan, M. Feix, E. Fijalkow. Schr¨odinger equation with time-dependent boundary conditions. J. Math. Phys., 1981, 22, P. 1219.

6. J.V. Jose, R. Gordery. Study of a quantum fermi-acceleration model. Phys. Rev. Lett., 1986, 56, P. 290.

7. P. Seba. Quantum chaos in the Fermi-accelerator model. Phys. Rev. A, 1990, 41, P. 2306.

8. Pinder D.N. The contracting square quantum well. Am. J. Phys., 1990, 58, P. 54.

9. M. Razavy. Time-dependent harmonic oscillator confined in a box. Phys. Rev. A, 1991, 44, P. 2384.

10. P. Pereshogin, P. Pronin. Effective Hamiltonian and Berry phase in a quantum mechanical system with time dependent boundary conditions. Phys. Lett. A, 1991, 156, P. 12{16.

11. C. Scheininger, M. Kleber. Quantum to classical correspondence for the Fermi-acceleration model. Physica D, 1991, 50, P. 391{404.

12. A.J. Makowski, S.T. Dembinski. Exactly solvable models with time-dependent boundary conditions. Phys. Lett. A, 1991, 154, P. 217{220.

13. A.J. Makowski. Two classes of exactly solvable quantum models with moving boundaries. J. Phys. A: Math. Gen., 1992, 25, P. 3419.

14. B. Jaramillo, R.P. Mart´ınez-y-Romero, H.N. N´u~nez-Y´epez, A.L. Salas-Brito. On the one-dimensional Coulomb problem. Physics Letters A, 2009, 374, P. 150-153.

15. F. Dom´ınguez-Adame, A. Rodr´ıguez. A one-dimensional relativistic sceened Coulomb potential. Physics Letters A, 1995, 198, P. 275{278.

16. K.D. Schotte, T.T. Truong. Phase transition of a one-dimensional Coulomb system. Phys.Rev. A, 1980, 22 Nu. 5.

17. F. Gesztesy. On the one-dimensional Coulomb Hamiltonian. J. Phys. A: Math. Gen., 1980, 13, P. 867{ 875.


Review

For citations:


Rakhmanov S., Karpova O., Rakhimboeva D.R., Khashimova F., Babajanov D. Quantum dynamics of hydrogen-like atom in one-dimensional box with oscillating walls. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):767-772. https://doi.org/10.17586/2220-8054-2015-6-6-767-772

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)