On theory of second harmonic generation in 2D nonlinear photonic crystals with arbitrary structures
https://doi.org/10.17586/2220-8054-2015-6-6-779-785
Abstract
Second harmonic generation in 2D nonlinear photonic crystals based on rectangular symmetry with rectangular motifs has been analyzed theoretically. An approximate solution of the spectral response for the second harmonic generation in any designed 2D nonlinear photonic crystal is obtained within the un-depleted pump approximation. Rapid calculation of the temporal profile of multidirectional second harmonic pulse in such nonlinear lattices has been also shown.
About the Authors
V. E. EshniyazovUzbekistan
100095, Tashkent
B. Kh. Eshchanov
Uzbekistan
100095, Tashkent
D. B. Yusupov
Uzbekistan
Universitetskya ul. 2, 100095, Tashkent
Q. Ya. Ergashev
Uzbekistan
Universitetskya ul. 2, 100095, Tashkent
U. K. Sapaev
Uzbekistan
100095, Tashkent
References
1. J.A. Armstrong, N. Bloembergen, D. Ducing, P.S. Pershan. Interaction between light waves in a nonlinear dielectric. Phys. Rev., 1962, 127, P. 1918.
2. V. Berger. Nonlinear photonic crystals. Phys. Rev. Lett., 1998, 81, P. 4136.
3. N. G. R. Broderick, R. T. Brafalean, T. M. Monro, D. J. Richardson, C. M. de Sterke. Temperature and wavelength tuning of second-, third-, and fourth-harmonic generation in a two-dimensional hexagonally poled nonlinear crystal. J. Opt. Soc. Am. B, 2002, 19, P. 2263.
4. S. Saltiel, Y. S. Kivshar. Phase matching in nonlinear photonic crystals, Opt. Lett., 2000, 25, P. 1204.
5. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, D.C. Hanna: Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett., 2000, 84, P. 4345.
6. A. Chowdhury, C. Staus, B.F. Boland, T.F. Kuech, L. McCaughan, Experimental demonstration of 1535{1555 nm simultaneous optical wavelength interchange with a nonlinear photonic crystal. Opt. Lett., 2001, 26, P. 1353.
7. S.M. Saltiel, Y.S. Kivshar: All { optical deflection and splitting by second { order cascading. Opt. Lett., 2002, 27, P. 921.
8. K.Gallo, A.Pasquazi, S.Stivala, G.Assanto. Parametric Solitons in Two-Dimensional Lattices of Purely Nonlinear Origin. Phys. Rev. Lett., 2008, 100, P. 053901.
9. A.Arie, N.Voloch. Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals. Laser & Photon. Rev., 2010, 4, P. 355.
10. A.M.Vyunishev, A.S.Chirkin. Multiple quasi-phase-matching in nonlinear Raman-Nath diffraction. Opt. Lett., 2015, 40, P. 1314.
11. D. T. Reid. Engineered quasi { phase { matching for second { harmoni cgeneration. Journal of optics A - pure and applied optics, 2003, 5(4), P. 97.
12. U. K. Sapaev, D. T. Reid. General second { harmonic pulse shaping in grating { engineered quasi { phase { matched nonlinear crystals. Optics Express, 2005, 13, P. 3264.
13. U. K. Sapaev, G. Assanto. Femtosecond pulse synthesis by efficient second { harmonic generation in engineered quasi phase matching gratings. Optics Express, 2007, 15, P. 7448.
14. U. K. Sapaev. Optimum Formation of the Response of Aperiodic Nonlinear Crystals in the Process of Second Harmonic Generation. Opt. and Spect., 2007, 102, P. 939.
15. D.B.Yusupov, U. K. Sapaev. Nonlinear Optics in Photonic Crystals. Tashkent, FAN, 2012, p. 128.
16. U.K.Sapaev, D.B. Yusupov, A.A. Sherniyzov, A.A. Uzakov. Theory of backward second-harmonic generation of short laser pulses in periodically and a periodically poled nonlinear crystals. Journal of Russian Laser Research, 2012, 33, P. 103.
17. S.M. Russel, P.E. Powers, M.J. Missey, K.L. Schepler. Broadband mid { infrared generation with two dimensional quasi-phase-matched structures. IEEE J. Quant. Electron, 2001, 37, P. 877.
18. M.A. Arbore, O. Marco, M.M. Fejer. Pulse compression during second { harmonic generation in a periodic quasi-phase { matching gratings. Opt. Lett., 1997, 22, P. 438.
Review
For citations:
Eshniyazov V.E., Eshchanov B.Kh., Yusupov D.B., Ergashev Q.Ya., Sapaev U.K. On theory of second harmonic generation in 2D nonlinear photonic crystals with arbitrary structures. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):779-785. https://doi.org/10.17586/2220-8054-2015-6-6-779-785