Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Chlorgraphynes: formation path, structure and electronic properties

Abstract

The presence in graphyne sheets of a variable amount of sp2 and sp1 carbon atoms suggests a high ability of these nanostructures for saturation. E.g., covalent binding of chlorine atoms would lead to sp3- and new sp2 hybridized carbon atoms, and the emergence of chlorgraphynes (chlorinated graphynes) with variable Cl/C stoichiometry may be expected. Here, employing DFT band structure calculations, a series of new graphyne derivatives — layered chlorgraphynes — is examined on example of α-graphyne. The possible formation path of chlorgraphynes as a set of consecutive free-radical additions of Cl atoms is established. From examples of a few representative compounds, the trends in the structural and electronic properties are discussed, depending on their stoichiometry.

About the Authors

A. L. Ivanovskii
Institute of Solid State Chemistry UB RAS
Russian Federation

Ekaterinburg



A. N. Enyashin
Institute of Solid State Chemistry UB RAS
Russian Federation

Ekaterinburg



References

1. Geim A.K., Novoselov K.S. The rise of graphene. Nature Materials, 6, P. 183–191 (2007).

2. Castro Neto A.H., Guinea N.M., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Reviews of Modern Physics, 81, P. 109–162 (2009).

3. Castro Neto A.H. The carbon new age. Materials Today, 13, P. 12–17 (2010).

4. Soldano C., Mahmood A., Dujardin E. Production, properties and potential of graphene. Carbon, 48, P. 2127–2150 (2010).

5. Rozkov A.V., Giavaras G., Bliokh Y.P., Freilikher V., Nori F. Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport. Physics Reports, 503, P. 77–114 (2011).

6. Castro Neto A.H., Novoselov K.S. New directions in science and technology: two-dimensional crystals. Reports on Progress in Physics, 74, P. 082501 (2011).

7. Huang X., Yin Z., Wu S., Qi X., He Q., Zhang Q., Yan Q., Boey F., Zhang H. Graphene-based materials: synthesis, characterization, properties, and applications. Small, 7, P. 1876–1902 (2011).

8. Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S. Graphene based materials: past, present and future. Progress in Materials Science, 56, P. 1178–1271 (2011).

9. Nair R.R., Ren W.C., Jalil R., Riaz I., Kravets V.G., Britnell L., Blake P., Schedin F., Mayorov A.S., Yuan S., Cheng H.M., Strupinski W., Bulusheva L.G., Okotrub A.V., Grigorieva I.V., Grigorenko A.N., Novoselov K.S., Geim A.K. Fluorographene: a two-dimensional counterpart of teflon. Small, 6, P. 2877– 2884 (2010).

10. Robinson J.T., Burgess J.S., Junkermeier C.E., Badescu S.C., Reinecke T.L., Perkins F.K., Zalalutdinov M.K., Baldwin J.W., Culbertson J.C., Sheehan P.E., Snow E.S. Properties of fluorinated graphene films. Nano Letters, 10, P. 3001–3005 (2010).

11. Zboril R., Karlicky F., Bourlinos A.B., Steriotis T.A., Stubos A.K., Georgakilas V., Safarova K., Jancik D., Trapalis C., Otyepka M. Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small, 6, P. 2885–2891 (2010).

12. Jeon K., Lee Z., Pollak E., Moreschini L., Bostwick A., Park C.M., Mendelsberg R., Radmilovic V., Kostecki R., Richardson T.J., Rotenberg E. Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano, 5, P. 1042–1046 (2011).

13. Withers F., Russo S., Dubois M., Craciun M.F. Tuning the electronic transport properties of graphene through functionalisation with fluorine. Nanoscale Research Letters, 6, P. 526 (2011).

14. Leenaerts O., Peelaers H., Hernandez-Nieves A.D., Partoens B., Peeters F.M. First-principles investigation of graphene fluoride and graphane. Physical Review B, 82, P. 195436 (2010).

15. Withers F., Dubois M., Savchenko A.K. Electron properties of fluorinated single-layer graphene transistors. Physical review B, 82, P. 073403 (2010).

16. Samarakoon D.K., Chen Z., Nicolas C., Wang X.Q. Structural and Electronic Properties of Fluorographene. Small, 7, P. 965–969 (2011).

17. Artyukhov V.I., Chernozatonskii L.A. Structure and Layer Interaction in Carbon Monofluoride and Graphane: A Comparative Computational Study. The Journal of Physical Chemistry A, 114, P. 5389– 5396 (2010).

18. Enyashin A.N., Ivanovskii A.L. Graphene allotropes. Physica Status Solidi (b), 248, P. 1879–1883 (2011).

19. Baughman R.H., Eckhardt H., Kertesz V. Structure-property predictions for new planar forms of carbon: layer phases containing sp2 and sp atoms. Journal of Chemical Physics, 87, P. 6687–6699 (1987).

20. Narita N., Nagai S., Suzuki S., Nakao K. Electronic structure of three-dimensional graphyne. Physical Review B, 62, P. 11146–11151 (2000).

21. Coluci V.R., Braga S.F., Legoas S.B., Galvao D.S., Baughman R.H. Families of carbon nanotubes: graphyne-based nanotubes. Physical Review B, 68, P. 035430 (2003).

22. Kang J., Li J., Wu F., Li S.S., Xia J.B. Elastic, Electronic, and optical properties of two-dimensional graphyne sheet. The Journal of Physical Chemistry C, 115, P. 20466–20470 (2011).

23. Srinivasu K., Ghosh S.K. Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. The Journal of Physical Chemistry C, 116, P. 5951–5956 (2012).

24. Zhang H., Zhao M., He X., Wang Z., Zhang X., Liu X. High mobility and high storage capacity of lithium in sp–sp2 hybridized carbon network: the case of graphyne. The Journal of Physical Chemistry C, 115, P. 8845–8850 (2011).

25. Pan L.D., Zhang L.Z., Song B.Q., Du S.X., Gao H.J. Graphyne- and graphdiyne-based nanoribbons: Density functional theory calculations of electronic structures. Applied Physics Letters, 98, P. 173102 (2011).

26. Malko D., Neiss C., Vines F., Gorling A. Competition for graphene: graphynes with direction-dependent dirac cones. Physical Review Letters, 108, P. 086804 (2012).

27. Hohenberg P., Kohn W. Inhomogeneous electron gas. Physical Review B, 136, P. 864–871 (1964).

28. Ordejon P., Artacho E., Soler J.M. Self-consistent order-N density-functional calculations for very large systems. Physical Review B, 53, P. R10441 (1996).

29. Soler J., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14, P. 2745– 2779 (2002).

30. Perdew J.P., Zunger A. Self-interaction correction to density-functional approximations for manyelectron systems. Physical Review B, 23, P. 5048–5079 (1981).

31. Troullier N., Martins J.L. Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43, P. 1993–2006 (1991).

32. Moreno J., Soler J.M. Optimal meshes for integrals in real- and reciprocal-space unit cells. Physical Review B, 45, P. 13891–13898 (1982).

33. Monkhorst H., Pack J.D. Special points for Brillouin-zone integrations. Physical Review B, 13, P. 5188– 5192 (1976).

34. Enyashin A.N., Ivanovskii A.L. Fluorinated derivatives of sp2 carbon allotropes: Structure, stability and electronic properties. Chemical Physics Letters, 545, P. 78–82 (2012).


Review

For citations:


Ivanovskii A.L., Enyashin A.N. Chlorgraphynes: formation path, structure and electronic properties. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(4):477-485.

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)