Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Time-dependent quantum graph

https://doi.org/10.17586/2220-8054-2015-6-2-173-181

Abstract

In this paper, we study quantum star graphs with time-dependent bond lengths. Quantum dynamics are treated by solving Schrodinger equation with time-dependent boundary conditions given on graphs. The time-dependence of the average kinetic energy is analyzed. The space-time evolution of a Gaussian wave packet is treated for an harmonically breathing star graph.

About the Authors

D. U. Matrasulov
Turin Polytechnic University in Tashkent; National University of Uzbekistan
Uzbekistan

17. Niyazov Str., 100095, Tashkent

100174, Tashkent



J. R. Yusupov
Turin Polytechnic University in Tashkent
Uzbekistan

17. Niyazov Str., 100095, Tashkent



K. K. Sabirov
National University of Uzbekistan
Uzbekistan

100174, Tashkent



Z. A. Sobirov
National University of Uzbekistan; Tashkent Financial Institute
Uzbekistan

100174, Tashkent

60A, Amir Temur Str., 100000, Tashkent



References

1. Kottos T. and Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs. Ann.Phys., 274(1), P.76–124 (1999).

2. Gnutzmann S. and Smilansky U. Quantum graphs: Applications to quantum chaos and universal spectral statistics. Adv.Phys., 55(5-6) P.527–625 (2006).

3. Gnutzmann S., Keating J.P. and Piotet F. Eigenfunction statistics on quantum graphs. Ann.Phys., 325(12) P.2595–2640 (2010).

4. Pauling L. The Diamagnetic Anisotropy of Aromatic Molecules. J. Chem. Phys., 4 P.673 (1936).

5. Exner P., Seba P. and Stovicek P. Quantum interference on graphs controlled by an external electric field. J. Phys. A: Math. Gen., 21 P.4009–4019 (1988).

6. Exner P. and Seba P. Free quantum motion on a branching graph. Rep. Math. Phys., 28(1) P.7–26 (1989).

7. Exner P. A duality between Schr¨odinger operators on graphs and certain Jacobi matrices. Ann. Inst. H. Poincare: Phys. Theor., 66(4) P.359–371 (1997).

8. Boman J. and Kurasov P. Symmetries of quantum graphs and the inverse scattering problem. Adv. Appl. Math., 35(1), P.58–70 (2005).

9. Cheon T., Exner P. and Turek O. Approximation of a general singular vertex coupling in quantum graphs. Ann.Phys., 325(3) P.548–578 (2010).

10. Hul O., Bauch S., Pakonski P., Savytskyy N., Zyczkowski K. and Sirko L. Experimental simulation of quantum graphs by microwave networks. Phys. Rev. E, 69, P.056205 (2004).

11. Keating J.P. Fluctuation statistics for quantum star graphs. Quantum graphs and their applications. Contemp. Math., 415, P.191–200 (2006).

12. Jose J.V. and Gordery R. Study of a quantum fermi-acceleration model. Phys. Rev. Lett., 56, P.290 (1986).

13. Karner G. On the quantum Fermi accelerator and its relevance to ’quantum chaos’. Lett. Math. Phys., 17, P.329–339 (1989).

14. Seba P. Quantum chaos in the Fermi-accelerator model. Phys. Rev. A, 41, P.2306 (1990).

15. Doescher S.W. and Rice M.H. Infinite Square-Well Potential with a Moving Wall. Am. J. Phys., 37, P.1246 (1969).

16. Munier A., Burgan J.R., Feix M. and Fijalkow E. Schr¨odinger equation with time-dependent boundary conditions. J. Math. Phys., 22, P.1219 (1981).

17. Pinder D.N. The contracting square quantum well. Am. J. Phys., 58, P.54 (1990).

18. Razavy M. Time-dependent harmonic oscillator confined in a box. Phys. Rev. A, 44, P.2384 (1991).

19. Pereshogin P. and Pronin P. Effective Hamiltonian and Berry phase in a quantum mechanical system with time dependent boundary conditions. Phys. Lett. A, 156(1-2), P.12–16 (1991).

20. Scheininger C. and Kleber M. Quantum to classical correspondence for the Fermi-acceleration model. Physica D, 50(3), P.391–404 (1991).

21. Makowski A.J. and Dembinski S.T. Exactly solvable models with time-dependent boundary conditions. Phys. Lett. A, 154(5-6), P.217–220 (1991).

22. Makowski A.J. and Peplowski P. On the behaviour of quantum systems with time-dependent boundary conditions. Phys. Lett. A, 163(3), P.143–151 (1992).

23. Makowski A.J. Two classes of exactly solvable quantum models with moving boundaries. J. Phys. A: Math. Gen., 25, P.3419 (1992).

24. Willemsen J.E. Exact solution of the wave dynamics of a particle bouncing chaotically on a periodically oscillating wall. Phys. Rev. E, 50, P.3116 (1994).

25. Moralez D.A., Parra Z. and Almeida R. On the solution of the Schr¨odinger equation with time dependent boundary conditions. Phys. Lett. A, 185(3), P.273–276 (1994).

26. Yuce C. Singular potentials and moving boundaries in 3D. Phys. Lett. A, 321(5-6), P.291–294 (2004).

27. Glasser M.L., Mateo J., Negro J. and Nieto L.M. Quantum infinite square well with an oscillating wall. Chaos, Solitons and Fractals, 41(4), P.2067–2074 (2009).

28. Kostrykin R. and Schrader R. Kirchhoff’s rule for quantum wires. J. Phys. A: Math. Gen., 32, P.595 (1999).


Review

For citations:


Matrasulov D.U., Yusupov J.R., Sabirov K.K., Sobirov Z.A. Time-dependent quantum graph. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(2):173-181. https://doi.org/10.17586/2220-8054-2015-6-2-173-181

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)