Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

A topological formulation for exotic quantum holonomy

https://doi.org/10.17586/2220-8054-2015-6-6-786-792

Abstract

An adiabatic change of parameters along a closed path may interchange the (quasi-)eigenenergies and eigenspaces of a closed quantum system. Such discrepancies, induced by adiabatic cycles are referred to as the exotic quantum holonomy, which is an extension of the geometric phase. \Small" adiabatic cycles induce no change on eigenspaces, whereas some \large" adiabatic cycles interchange eigenspaces. We explain the topological formulation for the eigenspace anholonomy, where the homotopy equivalence precisely distinguishes the larger cycles from smaller ones. An application to two level systems is explained. We also examine the cycles that involve the adiabatic evolution across an exact crossing, and the diabatic evolution across an avoided crossing. The latter is a nonadiabatic example of the exotic quantum holonomy.

About the Authors

A. Tanaka
Department of Physics, Tokyo Metropolitan University
Japan

Hachioji, Tokyo 192-0397 



T. Cheon
Laboratory of Physics, Kochi University of Technology
Japan

Tosa Yamada, Kochi 782-8502



References

1. M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London A, 1984, 392 P. 45.

2. A. Shapere, F. Wilczek (Eds.). Geometric phases in physics. World Scientific, Singapore, 1989.

3. B. Simon, Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase. Phys. Rev. Lett., 1983, 51, P. 2167.

4. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, Z. Zwanziger. The Geometric Phase in Quantum Systems, Springer, Berlin, 2003; D. Chru´sci´nski, A. Jamio lkowski. Geometric Phases in Classical and Quantum Mechanics. Birkh¨auser, Boston, 2004.

5. T. Cheon. Double spiral energy surface in one-dimensional quantum mechanics of generalized pointlike potentials. Phys. Lett. A, 1998, 248, P. 285.

6. A. Tanaka, M. Miyamoto. Quasienergy anholonomy and its application to adiabatic quantum state manipulation. Phys. Rev. Lett., 2007, 98, P. 160407.

7. N. Yonezawa, A. Tanaka, T. Cheon. Quantum holonomy in the Lieb-Liniger model. Phys. Rev. A, 2013, 87, P. 062113.

8. T. Cheon, A. Tanaka, O. Turek. Examples of quantum holonomy with topology changes. Acta Polytechnica, 2013, 53, P. 410.

9. A. Tanaka, T. Cheon. Bloch vector, disclination and exotic quantum holonomy. Phys. Lett. A, 2015, 379, P. 1693.

10. Y. Aharonov, J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 1987, 58, P. 1593.

11. P. G. de Gennes, J. Prost. The Physics of Liquid Crystals, 2-nd Edition, Oxford University Press, Oxford, 1993, Ch. 1; N. D. Mermin. The topological theory of defects in ordered media. Rev. Mod. Phys., 1979, 51, P. 591.

12. A. Dranov, J. Kellendonk, R. Seiler. Discrete time adiabatic theorems for quantum mechanical systems. J. Math. Phys., 1998, 39, P. 1340. A. Tanaka. Adiabatic theorem for discrete time evolution. J. Phys. Soc. Japan, 2011, 80, P. 125002.

13. T. Cheon, A. Tanaka, S. W. Kim. Exotic quantum holonomy in Hamiltonian systems. Phys. Lett. A, 2009, 374, P. 144.

14. T. Kato. On the Adiabatic Theorem of Qunatum Mechanics. J. Phys. Soc. Japan, 1950, 5, P. 435.


Review

For citations:


Tanaka A., Cheon T. A topological formulation for exotic quantum holonomy. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):786-792. https://doi.org/10.17586/2220-8054-2015-6-6-786-792

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)