Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The relativistic inverse scattering problem for quantum graphs

https://doi.org/10.17586/2220-8054-2015-6-2-192-197

Abstract

In this paper, we treat the inverse scattering problem for the Dirac equation on metric graphs. Using the known scattering data, we recover the potential in the Dirac equation. The Gel’fand-Levitan-Marchenko integral equation is derived and potential is explicitly obtained for the case of a primary star graph.

About the Authors

K. K. Sabirov
National University of Uzbekistan
Uzbekistan

4 University St., 100074, Tashkent



Z. A. Sobirov
National University of Uzbekistan
Uzbekistan

4 University St., 100074, Tashkent



O. V. Karpova
National University of Uzbekistan; Turin Polytechnic University in Tashkent
Uzbekistan

4 University St., 100074, Tashkent

17 Niyazov St., 100095, Tashkent



A. A. Saidov
Turin Polytechnic University in Tashkent
Uzbekistan

17 Niyazov St., 100095, Tashkent



References

1. Gnutzmann S. and Smilansky U. Quantum graphs: Applications to quantum chaos and universal spectral statistics. Advances in Physics, 55(5-6) July-October, P. 527–625 (2006).

2. Kottos T., Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs. Annals of Physics, 274, P. 76–124 (1999).

3. Shapira T., Smilansky U. Quantum graphs which sound the same. Math., Phys., Chem., 213, P. 17–29 (2006).

4. Kuchment P. Quantum graphs: I. Some basic structures. Waves Random Media, 14, P. S107-S128 (2004).

5. Levitan B.M., Sargsyan I.S. Shturm-Liuville and Dirac operators. Moscow: Nauka, 432 p. (1988).

6. Gasymov M.G., Levitan B.M. Definition of the Dirac system on scattering phase. Dokl. Akad. Nauk USSR, 167(6), P. 1219–1222 (1966).

7. Asymova G.M., Guseynov I.M. Inverse problem of the scattering theory for grid equation of the First order. Dokl. Acad. Nauk Az SSR, 39(11), P. 12–15 (1983).

8. Khanmamedov Ag. Kh. Inverse scattering problem for the difference Dirac operator on a half-line. Dokl. Akad. Hauk, 424(5), P. 597–598 (2009).

9. Bolte J., Harrison J. Spectral Statistics for the Dirac Operator on Graphs. arXiv:nlin.CD/0210029, 1(15) Oct, P. 1-28 (2002).

10. Gerasimenko N.I., Pavlov B.S. Scatterng problem on noncompact graphs. Theor. Mathem. Phys., 74(3), P. 345–359 (1988).

11. Gerasimenko N.I. Inverse scattering problem on the noncompact graph. Theor. Mathem. Phys., 75(2), P. 187–200 (1988).

12. Zakharov V.B. and Shabat A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP., 34(1), P. 62–69 (1972).


Review

For citations:


Sabirov K.K., Sobirov Z.A., Karpova O.V., Saidov A.A. The relativistic inverse scattering problem for quantum graphs. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(2):192-197. https://doi.org/10.17586/2220-8054-2015-6-2-192-197

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)