The relativistic inverse scattering problem for quantum graphs
https://doi.org/10.17586/2220-8054-2015-6-2-192-197
Abstract
In this paper, we treat the inverse scattering problem for the Dirac equation on metric graphs. Using the known scattering data, we recover the potential in the Dirac equation. The Gel’fand-Levitan-Marchenko integral equation is derived and potential is explicitly obtained for the case of a primary star graph.
About the Authors
K. K. SabirovUzbekistan
4 University St., 100074, Tashkent
Z. A. Sobirov
Uzbekistan
4 University St., 100074, Tashkent
O. V. Karpova
Uzbekistan
4 University St., 100074, Tashkent
17 Niyazov St., 100095, Tashkent
A. A. Saidov
Uzbekistan
17 Niyazov St., 100095, Tashkent
References
1. Gnutzmann S. and Smilansky U. Quantum graphs: Applications to quantum chaos and universal spectral statistics. Advances in Physics, 55(5-6) July-October, P. 527–625 (2006).
2. Kottos T., Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs. Annals of Physics, 274, P. 76–124 (1999).
3. Shapira T., Smilansky U. Quantum graphs which sound the same. Math., Phys., Chem., 213, P. 17–29 (2006).
4. Kuchment P. Quantum graphs: I. Some basic structures. Waves Random Media, 14, P. S107-S128 (2004).
5. Levitan B.M., Sargsyan I.S. Shturm-Liuville and Dirac operators. Moscow: Nauka, 432 p. (1988).
6. Gasymov M.G., Levitan B.M. Definition of the Dirac system on scattering phase. Dokl. Akad. Nauk USSR, 167(6), P. 1219–1222 (1966).
7. Asymova G.M., Guseynov I.M. Inverse problem of the scattering theory for grid equation of the First order. Dokl. Acad. Nauk Az SSR, 39(11), P. 12–15 (1983).
8. Khanmamedov Ag. Kh. Inverse scattering problem for the difference Dirac operator on a half-line. Dokl. Akad. Hauk, 424(5), P. 597–598 (2009).
9. Bolte J., Harrison J. Spectral Statistics for the Dirac Operator on Graphs. arXiv:nlin.CD/0210029, 1(15) Oct, P. 1-28 (2002).
10. Gerasimenko N.I., Pavlov B.S. Scatterng problem on noncompact graphs. Theor. Mathem. Phys., 74(3), P. 345–359 (1988).
11. Gerasimenko N.I. Inverse scattering problem on the noncompact graph. Theor. Mathem. Phys., 75(2), P. 187–200 (1988).
12. Zakharov V.B. and Shabat A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP., 34(1), P. 62–69 (1972).
Review
For citations:
Sabirov K.K., Sobirov Z.A., Karpova O.V., Saidov A.A. The relativistic inverse scattering problem for quantum graphs. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(2):192-197. https://doi.org/10.17586/2220-8054-2015-6-2-192-197