Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Intra pseudogap- and superconductivy-pair spin and charge fluctuations and underdome metal-insulator (fermion-boson)-crossover phenomena as keystones of cuprate physics

https://doi.org/10.17586/2220-8054-2015-6-6-803-824

Abstract

The most intriguing observation of cuprate experiments is most likely the metal-insulator-crossover (MIC), seen in the underdome region of the temperature-doping phase diagram for copper-oxides under a strong magnetic field, when superconductivity is suppressed. This MIC, which results in such phenomena as heat conductivity downturn, anomalous Lorentz ratio, nonlinear entropy, insulating ground state, nematicity- and stripe-phases and Fermi pockets, reveals the nonconventional dielectric property of the pseudogap-normal phase. Since conventional superconductivity appears from a conducting normal phase, the understanding of how superconductivity arises from an insulating state becomes a fundamental problem and thus the keystone for all of cuprate physics. Recently, in interpreting the physics of visualization in scanning tunneling microscopy (STM) real space nanoregions (NRs), which exhibit an energy gap, we have succeeded in understanding that the minimum size for these NRs provides pseudogap and superconductivity pairs, which are single bosons. In this work, we discuss the intra-particle magnetic spin and charge fluctuations of these bosons, observed recently in hidden magnetic order and STM experiments. We find that all the mentioned MIC phenomena can be obtained in the Coulomb single boson and single fermion two liquid model, which we recently developed, and the MIC is a crossover of sample percolating NRs of single fermions into those of single bosons.

About the Authors

B. Abdullaev
Institute of Applied Physics, National University of Uzbekistan
Uzbekistan

Tashkent 100174



D. B. Abdullaev
Institute of Applied Physics, National University of Uzbekistan
Uzbekistan

Tashkent 100174



C. -H. Park
Research Center for Dielectric and Advanced Matter Physics, Department of Physics, Pusan National University
Korea, Republic of

30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 



M. M. Musakhanov
National University of Uzbekistan
Uzbekistan

Tashkent 100174



References

1. Takagi H. et al. Systematic evolution of temperature-dependent resistivity in La2−xSrxCuO4. Phys. Rev. Lett., 1992, 69, P. 2975{2979; Keimer B. et al. Magnetic excitations in pure, lightly doped, and weakly metallic La2CuO4. Phys. Rev. B, 1992, 46, P. 14034; Wuyts B., Moshchalkov V. V., Bruynseraede Y. Resistivity and Hall effect of metallic oxygen-deficient Y Ba2Cu3Ox films in the normal state. Phys. Rev. B, 1996, 53, P. 9418; Abe Y. et al. Normal-state magnetotransport in La1:905Ba0:095CuO4 single crystals. Phys. Rev. B, 1999, 59, P. 14753.

2. Ando Y. et al. Logarithmic Divergence of both In-Plane and Out-of-Plane Normal-State Resistivities of Superconducting La2−xSrxCuO4 in the Zero-Temperature Limit. Phys. Rev. Lett., 1995, 75, P. 4662| 4665; Boebinger G. S. et al. Insulator-to-Metal Crossover in the Normal State of La2−xSrxCuO4 Near Optimum Doping. Phys. Rev. Lett., 1996, 77, P. 5417{5420; Fournier P. et al. Insulator-Metal Crossover near Optimal Doping in P r2−xCexCuO4: Anomalous Normal-State Low Temperature Resistivity. Phys. Rev. Lett., 1998, 81, P. 4720{4723; S Ono S. et al. Metal-to-Insulator Crossover in the Low-Temperature Normal State of Bi2Sr2−xLaxCuO6+δ. Phys. Rev. Lett., 2000, 85, P. 638{641; Ando Y. et al. Supporting evidence of the unusual insulating behavior in the low-temperature normal-state resistivity of underdoped La2−xSrxCuO4. J. Low Temp. Phys., 1996, 105, P. 867{875.

3. Hill R. W. et al. Breakdown of Fermi-liquid theory in a copper-oxide superconductor. Nature, 2001, 414, P. 711{715.

4. Proust C. et al. Heat transport in Bi2+xSr2−xCuO6+δ: Departure from the Wiedemann-Franz law in the vicinity of the metal-insulator transition. Phys. Rev. B, 2005, 72, P. 214511.

5. Loram J. W. et al. Electronic specific heat of Y Ba2Cu3O6+x from 1.8 to 300 K. Phys. Rev. Lett., 1993, 71, P. 1740{1743.

6. Loram J. W. et al. Evidence on the pseudogap and condensate from the electronic specific heat. J. Phys. Chem. Solids, 2001, 62, P. 59{64.

7. Fujita K. et al. Simultaneous Transitions in Cuprate Momentum-Space Topology and Electronic Symmetry Breaking. Science, 2014, 344, P. 612{616.

8. Vojta M. Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity. Adv. Phys., 2009, 58, P. 699{820; Vojta M. Stripes and electronic quasiparticles in the pseudogap state of cuprate superconductors. Physica C, 2012, 481, P. 178.

9. Sebastian S. E., Harrison N., Lonzarich G. G. Towards resolution of the Fermi surface in underdoped high-Tc superconductors. Rep. Prog. Phys., 2012, 75, P. 102501.

10. Abdullaev B., Park C. -H., Musakhanov M. M. Anyon bosonization of 2D fermions and single boson phase diagram implied from experiment on visualizing pair formation in superconductor Bi2Sr2CaCu2O8+δ. Physica C, 2011, 471, P. 486{491.

11. Gomes K. K. et al. Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ. Nature, 2007, 447, P. 569{572.

12. Pan S. H. et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x. Nature, 2001, 413, P. 282{285.

13. Fauque B. et al. Magnetic order in the pseudogap phase of high-TC superconductors. Phys. Rev. Lett., 2006, 96, P. 197001.

14. Lawler M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper- oxide pseudogap states. Nature, 2010, 466, P. 347{351.

15. Abdullaev B., Roessler U., Musakhanov M. An analytic approach to the ground state energy of charged anyon gases. Phys. Rev. B., 2007, 76, P. 075403(1-7).

16. Abdullaev B. Implicit Anyon or Single Particle Boson Mechanism of HTCS and Pseudogap Regime. In Trends in Boson Research, edit. by A. V. Ling. N. Y.: Nova Science Publisher Inc., 2006, p. 139{161.

17. B. Abdullaev B., Park C. -H. Bosonization of 2D Fermions due to Spin and Statistical Magnetic Field Coupling and Possible Nature of Superconductivity and Pseudogap Phases Below Eg. J. Korean Phys. Soc., 2006, 49, P. S642{S646; arxiv:cond-mat/0404668.

18. Leinaas J. M., Myrheim J. On the Theory of Identical Particles. Nuovo Cimento Soc. Ital. Fis. B, 1977, 37, P. 1{23.

19. Wilczek F. Magnetic Flux, Angular Momentum, and Statistics. Phys. Rev. Lett., 1982, 48, P. 1144{1147.

20. Dunne G. et al. Exact multi-anyon wave functions in a magnetic field. Nucl. Phys. B, 1992, 370, P. 601{635.

21. Laughlin R. B. in The Quantum Hall Effect, Edited by R. E. Prange and S. M. Girvin. New York, Springer-Verlag, 1987.

22. Wu Y. -S. Multiparticle Quantum Mechanics Obeying Fractional Statistics. Phys. Rev. Let., 1984, 53, P. 111{115. Erratum ibid, 1984, 53, P. 1028.

23. Comtet A., McCabe J., Ouvry S. Perturbative equation of state for a gas of anyons. Phys. Lett. B, 1991, 260, P. 372{376.

24. Bonsal L., Maradudin A. A. Some static and dynamical properties of a two-dimensional Wigner crystal. Phys. Rev. B, 1977, 15, P. 1959.

25. Rajagopal A. K., Kimball J. C., Correlations in a two-dimensional electron system. Phys. Rev. B, 1977, 15, P. 2819.

26. Tanatar B., Ceperley D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B, 1989, 39, P. 5005.

27. De Palo S., Conti S., Moroni S. Monte Carlo simulations of two-dimensional charged bosons. Phys. Rev. B, 2004, 69, P. 035109.

28. Attaccalite C. et al. Correlation Energy and Spin Polarization in the 2D Electron Gas. Phys. Rev. Lett., 2002, 88, P. 256601; Erratum ibid, 2003, 91, P. 109902.

29. Landau L. D., Lifshitz E. M. Quantum Mechanics, Non-relativistic Theory. Oxford, Pergamon Press, 1977, x 65.

30. Tallon J. L., Loram J. W. The doping dependence of T∗ what is the real high-Tc phase diagram? Physica C, 2001, 349, P. 53{68.

31. Onose Y. et al. Charge dynamics in underdoped Nd2−xCexCuO4: Pseudogap and related phenomena. Phys. Rev. B, 2004, 69, P. 024504.

32. A. Zimmers et al. Infrared properties of electron-doped cuprates: Tracking normal-state gaps and quantum critical behavior in P r2−xCexCuO4. Europhys. Lett., 2005, 70, P. 225.

33. Zaanen J. Superconductivity: Why the temperature is high. Nature, 2004, 430, P. 512{513.

34. Uemura Y. J. et al. Universal Correlations between Tc and n=m (Carrier Density over Effective Mass) in High-Tc Cuprate Superconductors. Phys. Rev. Lett., 1989, 62, P. 2317{2320.

35. Uemura Y. J. et al. Basic similarities among cuprate, bismuthate, organic, Chevrel-phase, and heavyfermion superconductors shown by penetration-depth measurements. Phys. Rev. Lett., 1991, 66, P. 2665{2669.

36. Kastner M. A., Birgeneau R. J., Shirane G., Endoh Y. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys., 1998, 70, P. 897{928.

37. Wang Y., Li L., Ong N. P., Nernst effect in high-Tc superconductors. Phys. Rev. B, 2006, 73, 024510.

38. Li Y et al. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ. Nature, 2008, 455, P. 372.

39. Li Y et al. Magnetic order in the pseudogap phase of HgBa2CuO4+δ studied by spin-polarized neutron diffraction. Phys. Rev. B, 2011, 84, P. 224508.

40. V. Baledent V. et al. Two-Dimensional Orbital-Like Magnetic Order in the High-Temperature La2xSrxCuO4 Superconductor. Phys. Rev. Lett., 2010, 105, P. 027004.

41. De Almeida-Didry S. et al. Evidence for intra-unit-cell magnetic order in Bi2Sr2CaCu2O8+δ. Phys. Rev. B, 2012, 86, P. 020504.

42. Mangin-Thro L. et al. Characterization of the intra-unit-cell magnetic order in Bi2Sr2CaCu2O8+δ. Phys. Rev. B, 2014, 89, P. 094523.

43. Norman M. Fermi-surface reconstruction and the origin of high-temperature superconductivity. Physics, 2010, 3, P. 86 (6 pages).

44. Caprara S. et al. Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates. Phys. Rev. B, 2015, 91, P. 205115.

45. Zavaritsky V. N. et al. Giant normal state magnetoresistances of Bi2Sr2CaCu2O8+δ. EPJ B, 2004, 42, P. 367{371.

46. Abdullaev B., Park C. -H., Park K. -S., Observed Non-Fermi Liquid Heat Transport and Entropy of Pseudogap Quasi-Particles as Possible Manifestations of Single Particle Bosons. // arxiv: cond-mat/0703290, 2007, 5 pages.

47. Gavrilkin S. Yu. et al. Percolative nature of the transition from 60 to 90 K-phase in Y Ba2Cu3O6+δ. Physica C, 2010, 470, P. S996{S997.

48. Zeng S. W. et al. Two-dimensional superconductor-insulator quantum phase transitions in an electrondoped cuprate. Phys. Rev. B, 2015, 92, P. 020503(R).

49. Oh S. et al. Doping Controlled Superconductor-Insulator Transition in Bi2Sr2xLaxCaCu2O8+δ. Phys. Rev. Lett., 2006, 96, P. 107003.

50. Stern A. Anyons and the quantum Hall effect { A pedagogical review. Ann. Phys., 2008, 323, P. 204.

51. Mclaughlin A. C., Attfield J. P. Emergent Transition for Superconducting Fluctuations in Antiferromagnetic Ruthenocuprates. Phys. Rev. B, 2014, 90, P. R220509.

52. Abdullaev B. Anyon Bosonized 2D Fermions or a Single Boson Physics of Cuprates: Experimental Evidences. In Low Dimensional Functional Materials, NATO Science for Peace and Security Series B: Physics and Biophysics 2013. Netherlands, Springer, 2013, P. 251-268.


Review

For citations:


Abdullaev B., Abdullaev D.B., Park C., Musakhanov M.M. Intra pseudogap- and superconductivy-pair spin and charge fluctuations and underdome metal-insulator (fermion-boson)-crossover phenomena as keystones of cuprate physics. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):803-824. https://doi.org/10.17586/2220-8054-2015-6-6-803-824

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)