Degradation of perovskites and Dexter-Varley paradox
https://doi.org/10.17586/2220-8054-2015-6-6-825-832
Abstract
This work presents a model for the degradation mechanism of organic{inorganic hybrid photovoltaic solar cells based on perovskites. The cross section for formation of Frenkel pairs in the sublattice of iodine is obtained. The channels for its annealing are found. Special attention is paid to the polaron states. It is shown that the stationary number of defects non-monotonically depends on the intensity of solar radiation. This allows one to analyze the properties of the radiation resistance of a device to ionizing radiation.
About the Authors
B. L. OksengendlerUzbekistan
Tashkent
S. E. Maksimov
Uzbekistan
Tashkent
M. B. Marasulov
Uzbekistan
Tashkent
References
1. Yin Wan-Jian, Yang J.-Hui, Kang J., et al. Halide perovskite materials for solar cell; a theoretical review. J. Mat. Chem. A. DOI: 10.10.39/c4ta05033a.
2. Giorge G., Yamashita K. Organic-inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. J. Mat. Chem. A. DOI: 10.10.39/c4ta05046k.
3. Frost J., Butler K.T., Brivio F., et al. Atomistic origin of high-performance in hybrid halide perovskite solar cell. arXiv: 1402.4980v3 (Cond mat. mtrl-sci) apr. 2014.
4. Yin W.-J., Shi T., Yan Y. Unusual defect physics in CH3NH3PbJ3 perovskite solar cell absorber. Appl. Phys. Lett., 2014, 104, P. 063903.
5. Oksengendler B.L., Ismailova O.B., Marasulov M.B., Urolov I.Z. On the degradation mechanism of functioning solar cells based on organic-inorganic perovskites. Appl. Solar Energy, 2014, 50(4), P. 255{ 259.
6. Burschka J., Pelle, N., Soon-Jin Moon, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, P. 316{319.
7. Itoh N., Stoneham A.M. Materials Modification by Electronic Excitation, Cambridge, Univ. Press, 2001.
8. Oksengendler B.L., Turaeva, N.N. Radiatsionnaya fizika kondensirovannykh sred (Radiation Physics for Condensed Mediums), v. 1: Kontseptsii (Conceptions), Tashkent, Fan, 2006.
9. Varley J. Discussion on Some Mechanisms of F- centre Formation in Alkali Hflides. I Phys. Chem. Sol., 1962, 23, P. 985{1005.
10. Yunusov M.C., Abdurakhmanova S.N., Oksengendler B.L., et al., Fizicheskie svoistva obluchennogo kremniya (Physical Properties of Irradiated Silicon). Tashkent, Fan, 1987.
11. Parilis E.E. Effekt Ozhe (Auger Effect). Tashkent, Fan, 1969.
12. Yunusov M.S., Zaykovskaya M.A., Oksengendler B.L. et al. Subthreshold defect production in Si. Phys. Status Solidi A, 1976, 35, P. K145{149.
13. Dexter D. Varley Mechanism of Defect Formation in Alkali Holides. Phys. Rev., 1960, 118(4), P. 934{935
14. Yunusov M.S., Abdurakhmanova S.N., Oksengendler B.L. et al. Podporogovye radiatsionnye effekty v poluprovodnikakh (Subthreshold Radiation Effects in Semiconductors). Tashkent, Fan, 1989.
15. Yunusov M.S., Abdurakhmanova S.N., Oksengendler B.L. et al. The influence of minority carrier injection on subthreshold defects in Si. Phys. Status Solidi A, 1984, 81, P. K145{149.
16. Davydov A.S. Teoriya tverdogo tela (Theory of solid state). Moscow, Nauka, 1976, 640 p.
17. Toyozawa Y. Self-Trapping and Defect Reaction. Semicond and Insulators, 1985, 5, P. 175{200.
18. Davison S., Levine Y. Surface (Tamm’s) States. Mosc. Mir, 1973, p. 232.
19. Schoonman. R. Organic { inorganic lead halide perovskite Solar cells materials. A possible stability problem. Chem. Phys.Lett., 2015, 619, P. 193{195.
20. Itoh N. Nakayama T. Desorption from compound Semiconductors and Oxides induced by Laser irradiation. Semicond. and Insulators, 1983, 5, P. 383{400.
Review
For citations:
Oksengendler B.L., Maksimov S.E., Marasulov M.B. Degradation of perovskites and Dexter-Varley paradox. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):825-832. https://doi.org/10.17586/2220-8054-2015-6-6-825-832