Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

On the derivation of the Schrödinger equation with point-like nonlinearity

https://doi.org/10.17586/2220-8054-2015-6-1-79-94

Abstract

In this report we discuss the problem of approximating nonlinear delta-interactions in dimensions one and three with regular, local or non-local nonlinearities. Concerning the one dimensional case, we discuss a recent result proved in [10], on the derivation of nonlinear delta-interactions as limit of scaled, local nonlinearities. For the three dimensional case, we consider an equation with scaled, non-local nonlinearity. We conjecture that such an equation approximates the nonlinear delta-interaction, and give an heuristic argument to support our conjecture.

About the Author

C. Cacciapuoti
Dipartimento di Scienza e Alta Tecnologia, Universita dell'Insubria
Italy

Via Valleggio 11, 22100 Como



References

1. Adami, R., Dell'Antonio, G., Figari, R., and Teta, A., The Cauchy problem for the Schrodinger equation in dimension three with concentrated nonlinearity, Ann. Inst. H. Poincare Anal. Non Lineaire 20 (2003), no. 3, 477{500.

2. Adami, R., Dell'Antonio, G., Figari, R., and Teta, A., Blow-up solutions for the Schrodinger equation in dimension three with a concentrated nonlinearity, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 1, 121{137.

3. Adami, R., Noja, D., and Ortoleva, C., Orbital and asymptotic stability for standing waves of a nonlinear Schrodinger equation with concentrated nonlinearity in dimension three, J. Math. Phys. 54 (2013), no. 1, 013501.

4. Adami, R. and Teta, A., A Simple Model of Concentrated Nonlinearity, Mathematical Results in Quantum Mechanics (Dittrich, J., Exner, P., and Tater, M., eds.), Operator Theory Advances and Applications, Birkhauser Basel, January 1999, pp. 183{189.

5. Adami, R. and Teta, A., A class of nonlinear Schrodinger equations with concentrated nonlinearity, J. Funct. Anal. 180 (2001), no. 1, 148{175.

6. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., and Holden, H., Solvable Models in Quantum Mechanics, AMS, 2005.

7. Berezin, F. A. and Faddeev, L. D., A Remark on Schrodinger's equation with a point interaction, Soviet Math. Dokl. 2 (1961), 372{375.

8. Bulashenko, O., Kochelap, V., and Bonilla, L., Coherent patterns and self-induced diraction of electrons on a thin nonlinear layer, Phys. Rev. B 54 (1996), no. 3, 1537{1540.

9. Cacciapuoti, C. and Exner, P., Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide, J. Phys. A: Math. Theor. 40 (2007), no. 26, F511{F523.

10. Cacciapuoti, C., Finco, D., Noja, D., and Teta, A., The NLS Equation in Dimension One with Spatially Concentrated Nonlinearities: the Pointlike Limit, Lett. Math. Phys. 104 (2014), no. 12, 1557{1570.

11. Cazenave, T., Semilinear Schrodinger Equations, Courant Lect. Notes Math. ed., vol. 10, AMS, 2003. [12] Correggi, M. and Dell'Antonio, G., Decay of a bound state under a time-periodic perturbation: a toy case, J. Phys. A 38 (2005), no. 22, 4769{4781.

12. Correggi, M., Dell'Antonio, G., Figari, R., and Mantile, A., Ionization for Three Dimensional Time-Dependent Point Interactions, Comm. Math. Phys. 257 (2005), no. 1, 169{192.

13. Dror, N. and Malomed, B. A., Solitons supported by localized nonlinearities in periodic media, Phys. Rev. A 83 (2011), no. 3, 033828.

14. Hmidi, T., Mantile, A., and Nier, F., Time-dependent Delta-interactions for 1D Schrodinger Hamiltonians, Math. Phys. Anal. Geom. 13 (2009), no. 1, 83{103.

15. Komech, A. I. and Komech, A. A., Global well-posedness for the Schrodinger equation coupled to a nonlinear oscillator, Russ. J. Math. Phys. 14 (2007), no. 2, 164{173.

16. Kronig, R., de L. and Penney, W. G., Quantum mechanics of electrons in crystal lattices, Proc. R. Soc. Lond. Ser. A 130 (1931), no. 814, 499{513.

17. Malomed, B. A. and Azbel, M. Y., Modulational instability of a wave scattered by a nonlinear center, Phys. Rev. B 47 (1993), no. 16, 10402{10406.

18. Neidhardt, H., Zagrebnov, V. A., et al., Linear non-autonomous Cauchy problems and evolution semigroups, Adv. Dierential Equations 14 (2009), no. 3/4, 289{340.

19. Sayapova, M. R. and Yafaev, D. R., The evolution operator for time-dependent potentials of zero radius, Boundary value problems of mathematical physics, vol. 159, Part 12, Work collection, Trudy Mat. Inst. Steklov., 1983, pp. 167{174.

20. Yafaev, D. R., Scattering theory for time-dependent zero-range potentials, Annales de l'IHP Physique theorique 40 (1984), no. 4, 343{359.


Review

For citations:


Cacciapuoti C. On the derivation of the Schrödinger equation with point-like nonlinearity. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(1):79-94. https://doi.org/10.17586/2220-8054-2015-6-1-79-94

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)