Parameterization of an interaction operator of optical modes in a single-mode optical fiber
https://doi.org/10.17586/2220-8054-2015-6-6-857-865
Abstract
The phenomenological parameters of the Hamiltonian for the photons produced in earlier studies [4] are associated with the parameters of the deformed optical fiber (OF). This Hamiltonian is necessary for the correct description of the propagation of photons through the quantum channel in a quantum communication protocols. Models of a compressing strain of the OF profile and a twisting deformation are considered. As a consequence, the phenomenological parameters of the Hamiltonian expressed in terms of such strains characteristics, as a relative compression of the profile, OF radius, the orientation angle of the deformed profile, rotation angle per unit length, elasto-optical tensor, and refraction coefficient.
Keywords
References
1. K. Nagy, T. Tel. Phenomenological quantum electrodynamics of anisotropic media. Acta Phys. Acad. Sci. Hun., 1981, 51, P. 125–137.
2. R.J. Glauber, M. Lewenstein. Quantum optics of dielectric media. Phys. Rev. A, 1991, 43, P. 467–491.
3. L. Knoll, W. Vogel, D.G. Welsch. Action of passive, lossless optical systems in quantum optics. Phys. Rev. A, 1987, 36, P. 3803–3818.
4. G.P. Miroshnichenko. Hamiltonian of Photons in a Single Mode Optical Fiber for Quantum Communications Protocols. Optics and Spectroscopy, 2012, 112 (5), P. 777–786.
5. S. Solimeno, B. Crosignani, P. Di Porto. Guiding, diffraction, and confinement of optical radiation. Academic Press Inc., 1986.
6. D. Gloge. Weakly Guiding Fibers. Appl. Opt., 1971, 10, P. 2252–2258.
7. D.J. Sterling Jr. Technician’s Guide to Fiber Optics, Second Edition. Delmar Publishers Inc., 1993.
8. R. Ulrich, A. Simon. Polarization optics of twisted single-mode fibers. Appl. Opt., 1979, 18, P. 2241–2251.
9. R. Ulrich, S.C. Rashleigh, W. Eickhoff. Bending-induced birefringence in single-mode fibers. Opt. Lett., 1980, 5, P. 273–275.
10. S.C. Rashleigh, R. Ulrich. High birefringence in tension-coiled single-mode fibers. Opt. Lett., 1980, 5, P. 354– 356.
11. M.A. Nielsen, I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000.
12. D. Bouwmeester, A. Ekert, A. Zeilinger. The Physics of Quantum Information. Springer, Berlin, 2000.
13. A. Muller, H. Zbinden, N. Gisin. Quantum cryptography over 23 km in installed under-lake telecom fibre. Europhys. Lett., 1996, 33, P. 335–339.
14. G. Ribordy, J.-D. Gautier, et al. Fast and user-friendly quantum key distribution. Mod. Opt., 2000, 47, P. 517-531.
15. J.-M. M’erolla, Y. Mazurenko, J.-P. Goedgebuer, W.T. Rhodes. Single-Photon Interference in Sidebands of Phase-Modulated Light for Quantum Cryptography. Phys. Rev. A, 1999, 82, P. 1656–1659.
16. A.K. Ekert. Quantum cryptography based oh Bell’s theorem. Phys. Rev. Lett., 1991, 67, P. 661–663.
17. D.N. Vavulin, A.A. Sukhorukov. Numerical solution of Schrodinger equation for biphoton wave function in twisted waveguide arrays. Nanosystems: Phys., Chem., Math., 2015, 6 (5), P. 689–696.
18. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii. Electrodynamics of continuous media, 2nd ed., Elsevier, 2004.
19. D. Marcuse. Theory of Dielectric Optical Waveguides. Boston, MA:Academic, 1991.
Review
For citations:
Miroshnichenko G.P. Parameterization of an interaction operator of optical modes in a single-mode optical fiber. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):857-865. https://doi.org/10.17586/2220-8054-2015-6-6-857-865