Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion

https://doi.org/10.17586/2220-8054-2015-6-6-866-874

Abstract

Yttrium orthoferrite nanocrystallites with hexagonal and orthorhombic structures were obtained directly by the glycine-nitrate synthesis. The nanocrystallites have plate-like morphology and are strongly agglomerated in highlyporous structures, as was shown by the TEM investigation. The influences of the synthesis conditions on the yttrium orthoferrite crystallization, its nanocrystallite size and morphology are discussed.

About the Authors

V. I. Popkov
Saint Petersburg State Technological Institute (Technical University) ; Ioffe Physical Technical Institute
Russian Federation

190013, St. Petersburg, Moskovsky prospect 26

194021, St. Petersburg, Politekhnicheskaya str. 26



O. V. Almjasheva
Saint Petersburg Electrotechnical University “LETI” ; Ioffe Physical Technical Institute
Russian Federation

197376, St. Petersburg, Professora Popova str. 5

194021, St. Petersburg, Politekhnicheskaya str. 26



V. N. Nevedomskiy
Ioffe Physical Technical Institute
Russian Federation

194021, St. Petersburg, Politekhnicheskaya str. 26



V. V. Sokolov
Ioffe Physical Technical Institute
Russian Federation

194021, St. Petersburg, Politekhnicheskaya str. 26



V. V. Gusarov
Saint Petersburg State Technological Institute (Technical University) ; Saint Petersburg Electrotechnical University “LETI” ; Ioffe Physical Technical Institute
Russian Federation

190013, St. Petersburg, Moskovsky prospect 26

197376, St. Petersburg, Professora Popova str. 5

194021, St. Petersburg, Politekhnicheskaya str. 26



References

1. Chick L.A., Pederson L.R., et al. Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett., 1990, 10 (1–2), P. 6–12.

2. Patil K.C., Aruna S.T., Mimani T. Combustion synthesis: an update. Curr. Opin. Solid State Mater. Sci., 2002, 6, P. 507–512.

3. Mukasyan A.S., Epstein P., Dinka P. Solution combustion synthesis of nanomaterials. Proc. Combust. Inst., 2007, 31 (2), P. 1789–1795.

4. Aruna S.T., Mukasyan A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci., 2008, 12 (3–4), P. 44–50.

5. Saket S., Rasouli S., et al. Solution Combustion Synthesis of Nano-Crystalline Alumina Powders. J. Mater. Sci. Eng., 2010, 4 (8), P. 80–84.

6. Zhuravlev V.D., Vasil’ev V.G., et al. Glycine-nitrate combustion synthesis of finely dispersed alumina. Glas. Phys. Chem., 2010, 36 (4), P. 506–512.

7. Zhuravlev V.D., Bamburov V.G., et al. Solution combustion synthesis of α–Al2O3 using urea. Ceram. Int., 2013, 39 (2), P. 1379–1384.

8. Verma A., Dwivedi R., et al. Microwave-Assisted Synthesis of Mixed Metal-Oxide Nanoparticles. J. Nanoparticles, 2013, 2, P. 1–11.

9. Nair S.R., Purohit R.D., et al. Role of glycine-to-nitrate ratio in influencing the powder characteristics of La(Ca)CrO3. Mater. Res. Bull., 2008, 43 (6), P. 1573–1582.

10. Chiu T.-W., Yu B.-S., et al. Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process. J. Alloys Compd., 2011, 509 (6), P. 2933–2935.

11. Jiang L., Liu W., et al. Rapid synthesis of DyFeO3 nanopowders by auto-combustion of carboxylate-based gels. J. Sol-Gel Sci. Technol., 2011, 61 (3), P. 527–533.

12. Kondakindi R.R., Karan K., Peppley B.A. A simple and efficient preparation of LaFeO3 nanopowders by glycine-nitrate process: Effect of glycine concentration. Ceram. Int., 2012, 38 (1), P. 449–456.

13. Komlev A.A., Vilezhaninov E.F. Glycine-nitrate combustion synthesis of nanopowders based on nonstoichiometric magnesium-aluminum spinel. Russ. J. Appl. Chem., 2013, 86 (9), P. 1344–1350.

14. Jose R., James J., John A.M., et al. A new combustion process for nanosized YBa2ZrO5:5 powders. Nanostructured Mater., 1999, 11 (5), P. 623–629.

15. Reddy B.M., Reddy G.K., Rao K.N., et al. Characterization and photocatalytic activity of TiO2–MxOy (MxOy = SiO2, Al2O3, and ZrO2) mixed oxides synthesized by microwave-induced solution combustion technique. J. Mater. Sci., 2009, 44 (18), P. 4874–4882.

16. Khetre S.M., Jadhav H.V., Jagadale P.N., et al. Studies on electrical and dielectric properties of LaFeO3. Adv. Appl. Sci. Res., 2011, 2 (4), P. 503–511.

17. Tien N.A., Almjasheva O.V., Mittova I.Ya., et al. Synthesis and magnetic properties of YFeO3 nanocrystals. Inorg. Mater., 2009, 45 (11), P. 1304–1308.

18. Gil D.M., Navarro M.C., Lagarrigue M.C., et al. Synthesis and structural characterization of perovskite YFeO3 by thermal decomposition of a cyano complex precursor, YFe(CN)6·4H2O. J. Therm. Anal. Calorim., 2010, 103 (3), P. 889–896.

19. Tang P., Chen H., Cao F., et al. Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts. Catal. Sci. Technol., 2011, 1 (7), P. 1145–1148.

20. Zhang R.L., Fang C., Yin W., et al. Dielectric behavior of hexagonal and orthorhombic YFeO3 prepared by modified sol-gel method. J. Electroceramics, 2014, 32, P. 187–191.

21. Popkov V.I., Almjasheva O.V. Formation Mechanism of YFeO3 Nanoparticles under the Hydrothermal Conditions. Nanosyst.: Phys., Chem., Math., 2014, 5 (5), P. 703–708.

22. Tugova E.A., Karpov O.N. Nanocrystalline Perovskite-Like Oxides Formation in Ln2O3–Fe2O3–H2O (Ln = La, Gd) Systems. Nanosyst.: Phys., Chem., Math., 2014, 5 (6), P. 854–860.

23. Popkov V.I., Almjasheva O.V., Schmidt M.P., et al. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russ. J. Gen. Chem., 2015, 85 (6), P. 1370–1375.

24. Wu L., Yu J.C., Zhang L., et al. Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J. Solid State Chem., 2004, 177 (10), P. 3666–3674.

25. Zhang W., Fang C., Yin W., et al. One-step synthesis of yttrium orthoferrite nanocrystals via sol-gel autocombustion and their structural and magnetic characteristics. Mater. Chem. Phys., 2013, 137 (3), P. 877–883.

26. Popkov V.I., Almjasheva O. V. Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions. Russ. J. Appl. Chem., 2014, 87 (2), P. 167–171.

27. Popkov V.I., Almjasheva O.V., Gusarov V.V. The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russ. J. Appl. Chem., 2014, 87 (10), P. 1417–1421.

28. Popkov V.I., Almjasheva O.V., Schmidt M.P., et al. Features of Nanosized YFeO3 Formation under Heat Treatment of Glycine-Nitrate Combustion Products. Russ. J. Inorg. Chem., 2015, 60 (10), P. 1193–1198.

29. Young R.A. The Rietveld Method. Oxford Univ. Press., Oxford, 1993, 312 p.

30. Patterson A. The Scherrer formula for X-ray particle size determination. Phys. Rev., 1939, 56, P. 978–982.

31. Goldstein J.I., Newbury D.E., Echlin P., et al. Scanning Electron Microscopy and X-ray Microanalysis. Springer, New York, 2003, 690 p.


Review

For citations:


Popkov V.I., Almjasheva O.V., Nevedomskiy V.N., Sokolov V.V., Gusarov V.V. Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):866-874. https://doi.org/10.17586/2220-8054-2015-6-6-866-874

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)