Quantum dynamics in a kicked square billiards
https://doi.org/10.17586/2220-8054-2015-6-2-216-223
Аннотация
We study kicked particle dynamics in a rectangular quantum billiard. The kicking potential is chosen as localized at the center of the billiard. The exact solution for the time-dependent Schr¨odinger equation for a single kicking period is derived. Using this solution, the time-dependence of the average kinetic energy and probability density as a function of spatial coordinates are computed. Different regimes for trapping of the particle in kicking area are analyzed. It is found that depending of the values of kicking parameters, the average kinetic energy can be a periodic or a monotonically growing function of time or can be suppressed. Such behavior is explained in terms of particle trapping regimes. Wave packet dynamics are also studied.
Об авторах
S. RakhmanovУзбекистан
D. Babajanov
Узбекистан
O. Karpova
Узбекистан
F. Khoshimova
Узбекистан
Список литературы
1. G. Casati, B.V. Chirikov, J. Ford, F.M. Izrailev, in: G. Casati, J.Ford (Eds.), Lecture Notes in Physics, vol. 93, Springer-Verlag, Berlin, p. 334 (1979).
2. Lichtenberg A.J., Lieberman M.A. Regular and stochastic motion. N.Y.-Heidelberg-Berlin, Springer-Verlag, 499 pp. (1983).
3. R.Z. Sagdeev, D.A. Usikov, G.M. Zaslavsky, Nonlinear Physics: From Pendulum to Turbulence and Chaos. Academic Publisher, New York (1988).
4. M.C. Gutzwiller, Chaos in classical and quantum systems, New York, Springer Verlag (1990).
5. Bagrov V.G. and Gitman D.M. Exact Solutions of Relativistic Wave Equations, Dordrecht, Kluwer (1990).
6. A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dy-namics. Springer-Verlag, New York (1992).
7. Thaller B. The Dirac Equation. Berlin, Springer (1992).
8. M.F. Shlesinger, G.M. Zaslavsky, U. Frish (Eds.), Lvy Flights and Related Topics in Physics. Springer-Verlag (1995).
9. G. Casati and B.V. Chirikov(eds.) Quantum chaos between order and disorder a selection of papers. Cambridge University Press, New York (1995).
10. Hans-J¨urgen St¨ockmann. Quantum Chaos: An Introduction. Cambridge University Press (1995).
11. De Vincenzo S. Thesis Magister scientiarum in science, physics mention. Universidad Central de Venezuela, Caracas (1996). (in Spanish)
12. K. Nakamura Quantum Versus Chaos. Questions Emerging from Mesoscopic Cosmos. Kluwer Academic Dordrecht (1997).
13. Yoseph Imry. Introduction to Mesoscopic Physics. Oxford University Press (1997).
14. H.-J. St¨ockmann, Quantum Chaos: An Introduction. Cambridge University Press, Cambridge, UK (1999).
15. K. Richter, Semiclassical Theory of Mesoscopic Quantum Systems. Springer, Berlin (2000).
16. K. Nakamura and T. Harayama. Quantum Chaos and Quantum Dots. Oxford University Press (2004).
Рецензия
Для цитирования:
, , , . Наносистемы: физика, химия, математика. 2015;6(2):216-223. https://doi.org/10.17586/2220-8054-2015-6-2-216-223
For citation:
Rakhmanov S., Babajanov D., Karpova O., Khoshimova F. Quantum dynamics in a kicked square billiards. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(2):216-223. https://doi.org/10.17586/2220-8054-2015-6-2-216-223