Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Nanocatalysis: hypothesis on the action mechanism of gold

https://doi.org/10.17586/2220-8054-2015-6-2-249-261

Abstract

In this article, the problem of nanocatalysis is considered when the catalysts are gold nanoparticles. The main experimental facts are presented and basic qualitative dependences are highlighted. The hypothesis considers the role of Tamm states of gold nanoparticles, with the modification of these states to reduce nanoparticle sizes. A semi-quantitative quantum-chemical reaction scheme of oxygen dissociation with gold nanocatalysis is shown. A theoretical answer to the basic experimental test has been obtained.

About the Authors

B. L. Oksengendler
Uzbek Academy of Sciences
Uzbekistan

Institute of chemistry and physics of polymers

Tashkent



B. Askarov
Uzbek Academy of Sciences
Uzbekistan

Institute of chemistry and physics of polymers

Tashkent



I. N. Nurgaliyev
Uzbek Academy of Sciences
Uzbekistan

Institute of chemistry and physics of polymers

Tashkent



S. E. Maksimov
Uzbek Academy of Sciences
Uzbekistan

Institute of ion-plasma and laser technologies

Tashkent



V. N. Nikiforov
M.V.Lomonosov State University
Russian Federation

Physics Department

Moscow



References

1. Bond G.C. The catalytic properties of gold. Gold Bull., 5(1), P. 11–13 (1972).

2. Schwank J. Catalytic gold. Gold Bull., 16(4), P. 103–110 (1983).

3. Hutchings G.J. Catalysis. A golden future. Gold Bull., 29(4), P. 123–130 (1996).

4. Somorjai G.A., Park J.Y. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure. J. Chem. Phys., 128(18), P. 182504 (2008).

5. Thompson D. New advances in gold catalysis. Part I. Gold Bull, 31(4), P. 111–118 (1998).

6. Bond G.C., Thompson D.T. Catalysis by gold. Catal. Rev.Sci. Eng., 41(3-4), P. 319–388 (1999).

7. Haruta M., Kobayashi T., Sano H., Yamada N. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0◦. Chem. Lett., 2, P. 405–408 (1987).

8. Haruta M. Size and support dependency in the catalysis of gold. Catal. Today, 36, P. 153–166 (1997).

9. Haruta M. Novel catalysis of gold deposited on metal oxides. Catal. Surv. Asia., 1, P. 61–73 (1997).

10. Haruta M. Gold as a low temperature catalyst: factors controlling activity and selectivity. In book: 3-World Congress on Oxidation Catalysis. Elsevier Science, Amsterdam, P. 123–134 (1997).

11. Haruta M., Dat´e M. Advances in the catalysis of Au nanoparticles. Appl. Catal., A 222, P. 427–437 (2001).

12. Grisel R.J.H., Weststrate K.-J., Gluhoi A., Nieuwenhuys B.E. Catalysis by Gold Nanoparticles. Gold Bull., 35(2), P. 39–45 (2002).

13. Santra A.K., Goodman D.W.Oxide-supported metal clusters: models for heterogeneous catalysts. J. Phys.: Condens. Matter, 14, P. R31–R62 (2002).

14. Hutchings G.J. Gold catalysis in chemical processing. Catal. Today, 72, P. 11–17 (2002).

15. Haruta M. When Gold Is Not Noble: Catalysis by Nanoparticle. Chem. Record., 3(2), P. 75–87 (2003).

16. Haruta M. Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation. J. New Mater. Electrochem. Syst., 7, P. 163–172 (2004).

17. Meyer R., Lemire C., Shaikhutdinov S.K., Freund H.J. Surface chemistry of catalysis by gold. Gold Bull., 37, P. 72–124 (2004).

18. Hutchings G.J. Catalysis by gold. Catal. Today, 100, P. 55–61 (2005).

19. Haruta M., Tsubota S., Kobayashi T., Kageyama H., Genet M.J., Delmon B. Low-temperature oxidation of CO over gold supported on TiO2, alpha-Fe2O3 and Co3O4. J. Catal., 144, P. 175–192 (1993).

20. Tsubota S., Cunningham D.A.H., Bando Y., Haruta M. Prep. Catal. VI, Scientific Basis for the Preparation of Heterogeneous Catalysts. Elsevier, Amsterdam, 277 p. (1995).

21. Boccuzzi F., Chiorino A., Tsubota S., Hurata M. FTIR Study of Carbon Monoxide Oxidation and Scrambling at Room Temperature over Gold Supported on ZnO and TiO2. J. Phys. Chem., 100(9), P. 3625–3631 (1996).

22. Bamwenda G.R., Tsubota S., Nakamura T., Haruta M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett., 44(1-2), P. 83–87 (1997).

23. Valden M., Lai X., Goodman D.W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 281, P. 1647–1650 (1998).

24. Kozlov A.I., Kozlova A.P., Asakura K., Matsui Y., Kogure T., Shido T., Iwasawa Y. Supported gold catalysts prepared from a gold phosphine precursor and As-precipitated metal-hydroxide precursors: Effect of preparation conditions onthe catalytic performance. J. Catal., 196, P. 56–65 (2000).

25. Claus P., Bruckner A., Mohr C., Hofmeister H. Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc., 122, P. 11430–11439 (2000).

26. Schumacher B., Plzak V., Kinne K., Behm R.J. Highly active Au/TiO2 catalysts for low-temperature CO oxidation: Preparation, conditioning and stability. Catal. Lett., 89(1-2), P. 109–114 (2003).

27. Zanella R., Giorgio S., Shin C.-H., Henry C.R., Louis C. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catal., 222, P. 357–367 (2004).

28. Schwartz V., Mullins D.R., Yan W., Chen B., Dai S., Overbury S.H. XAS study of Au supported on TiO2: Influence of oxidation state and particle size on catalytic activity. J. Phys. Chem. B., 108(40), P. 15782–15790 (2004).

29. Remediakis I.N., Lopez N., Nørskov J.K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem. Int. Ed., 44(12), P. 1824–1826 (2005).

30. Bond C.G., Thompson D.T. Gold-catalysed oxidation of carbon monoxide. Gold Bull., 33, P. 41–50 (2000).

31. Costello C.K., Yang J.H., Law H.Y., Wang Y., Lin J.N., Marks L.D., Kung M.D., Kung H.H. On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3. Appl. Catal. A, 243, P. 15–24 (2003).

32. Sanchez A., Abbet S., Heiz U., Schneider W.D., H¨akkinen H., Barnett R.N., Landman U. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem.A, 103, P. 9573–9578 (1999).

33. Yoon B., H¨akkinen H., Landman U., W¨orz A.S., Antonietti J.-M., Abbet S.,Judai K., Heiz U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science, 307, P. 403–407 (2005).

34. Fu Q., Saltsburg H., Flytzani-Stephanopoulos M. Active Nonmetallic Au and Pt Species on ceria-based water-gas shift catalysts. Science, 301, P. 935–938 (2003).

35. Guzman J., Gates B.C. Structure and Reactivity of a Mononuclear Gold-Complex Catalyst Supported on Magnesium Oxide. Angew. Chem. Int. Ed., 42, P. 690–693 (2003).

36. Molina L.M., Hammer B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett., 90, P. 206102 (2003).

37. Liu Z.-P., Gong X.-Q., Kohanoff J., Sanchez C., Hu P. Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. Phys. Rev. Lett., 91, P. 266102 (2003).

38. Cleveland C.L., Landman U., Schaaff T.G., Shafigullin M.N., Stephens P.W., Whetten R.L. Structural evolution of smaller gold nanocrystals: The truncated decahedral motif. Phys. Rev. Lett., 79, P. 1873–1876 (1997).

39. Uppenbrink J., Wales D.J. Structure and Energetics of Model Metal Clusters. J. Chem. Phys., 96, P. 8520–8534 (1992).

40. Yacaman M.J., Fuentes S., Dominguez J.M. The effect of shape and crystal structure of small particles on their catalytic activity. Surf. Sci., 106, P. 472–477 (1981).

41. Moraweck B., Renouprez A.J. EXAFS determination of the structure of small platinum particles. Surf. Sci., 106, P. 35–44 (1981).

42. Berry C.R. Electron diffraction from small crystals. Phys. Rev., 88(3), P. 596–599 (1952).

43. Wasserman H.J., Vermaak J.S. On the determination of a lattice contraction in very small silver particles. Surf. Sci., 22, P. 164–172 (1970).

44. Purdum H., Montano P.A., Shenoy G.K., Morrison T.I. Extended-x-ray-absorption-fine-structure study of small Fe molecules isolated in solid neon. Phys. Rev.B, 25(7), P. 4412–4417 (1982).

45. Montano P.A., Schulze W., Tesche B., Shenoy G.K., Morrison T.I. Extended x-ray-absorption finestructure study of Ag particles isolated in solid argon. Phys. Rev.B, 30, P. 672–677 (1984).

46. Montano P.A., Purdum H., Shenoy G.K., Morrison T.I. X-ray absorption fine structure study of small metal clusters isolated in rare-gas solids. Surf. Sci., 156, P. 228–233 (1985).

47. Heinemann K., Poppa H. In-situ TEM evidence of lattice expansion of very small supported palladium particles. Surf. Sci., 156, P. 265–274 (1985).

48. Balerna A., Bernieri E., Picozzi P., Reale A., Santucci S., Burattini E.,Mobilio S. A structural investigation on small gold clusters by EXAFS. Surf. Sci., 156, P. 206–213 (1985).

49. Balerna A., Bernieri E., Picozzi P., Reale A., Santucci S., Burattini E., Mobilio S., Extended x-ray-absorption fine-structure and near-edge-structure studies on evaporated small clusters of Au. Phys. Rev.B, 31(8), P. 5058–5065 (1985).

50. Montano P.A., Shenoy G.K., Alp E.E., Schulze W., Urban J. Structure of copper microclusters isolated in solid argon. Phys. Rev.Lett.B., 56, P. 2076–2079 (1986).

51. Pinto A., Pennisi A.R., Faraci G., D’Agostino G., Mobilio S., Boscherini F. Evidence for truncated octahedral structures in supported gold clusters. Phys. Rev.B, 51(8), P. 5315–5321 (1995).

52. Klimenkov M., Nepijko S., Kuhlenbeck H., B¨aumer M., Schl¨ogl R., Freund H.-J. The structure of Pt-aggregates on a supported thin aluminum oxide film in comparison with unsupported alumina: a transmission electron microscopy study. Surf. Sci., 391, P. 27–36 (1997).

53. Oudenhuijzen M.K., Bitter J.H., Koningsberger D.C. The Nature of the Pt–H bonding for strongly and weakly bonded hydrogen on platinum. A XAFS spectroscopy study of the Pt–H antibonding shaperesonance and Pt–H EXAFS. J. Phys. Chem.B., 105(20), P. 4616–4622 (2001).

54. Montano P.A., Zhao J., Ramanathan M., Shenoy G.K., Chulze W. EXAFS study of Ag, Fe and Ge microclusters. Physica B, 158, 1989(1-3), P. 242–242.

55. Apai G., Hamilton J.F., St¨ohr J., Thompson A. Extended X-ray-absorption fine structure of small Cu and Ni clusters: binding-energy and bond-length changes with cluster size. Phys. Rev. Lett., 43(2), P. 165–169 (1979).

56. Crescenzi M., Picozzi P., Santucci S., Battistoni C., Mattogno G. Cluster growth of Cu on graphite: XPS, Auger and electron energy loss studies. Solid State Commun., 51(10), P. 811–815 (1984).

57. Dupree R., Forwood C.T., Smith M.J.A. Conduction electron spin resonance in small particles of gold. Phys. Status Solidi, 24, P. 525–530 (1967).

58. Monot R., Cˆatelain A., Borel J.P. Conduction electron spin resonance in small particles of pure gold. Phys. Lett. A., 34, P. 57–58 (1971).

59. Mason M.G., Gerenser L.J., Lee S.T. Electronic structure of catalytic metal clusters studied by X-Ray photoemission spectroscopy. Phys. Rev. Lett., 39(5), P. 288–291 (1977).

60. Schmeisser D., Jocobi K., Kolb D.M. Photoemission study of matrix isolated Cu atoms and clusters. J. Chem. Phys., 75(11), P. 5300–5004 (1981).

61. Lee S.-T., Apai G., Mason M.G., Benbow R., Hurych Z. Evolution of band structure in gold clusters as studied by photoemission. Phys. Rev. B., 23(2), P. 505–508 (1981).

62. Kreibig U., Genzel L. Optical absorption of small metallic particles. Surf. Sci., 156, P. 678–700 (1985).

63. Schmid G. Large clusters and colloids: Metals in the embryonic state. Chem. Rev., 92, P. 1709–1727 (1992).

64. Binns C. Nanoclusters deposited on surfaces. Surf. Sci. Rep., 44, P. 1-49 (2001).

65. Tamm I.E. Collection of scientific works. (In Russian). Nauka, Moscow, V. 1, 440 p. (1975).

66. Morrison S.R. The Chemical Physics of Surfaces. Plenum Press, New York-London, 415 p. (1977).

67. Davison S.G., Levine J.D. Surface States. Academic press, New York, 149 p. (1970).

68. Flugge. S. Practical Quantum Mechanics. Springer, Berlin, Part I. 628 p. (1971).

69. Efros Al.L., Efros A.L. Interband absorption of light in a semiconductor ball. Fizika i tekhnika poluprovodnikov, 16(7), P. 1209–1214 (1982). (In Russian).

70. Kronig R.L, Penney W.G. Quantum mechanics of electrons in crystal lattices. Proc. Roy. Soc., 130, P. 499–513 (1931).

71. Eyring H., Walter J., Kimball G.E. Quantum Chemistry. Wiley, New York, 345 p. (1944).

72. Eyring H., Lin S.H., Lin S.M. Basic Chemical Kinetics. Wiley, New York, 493 p. (1980).

73. W.Haberditzl. Structure of Matter and Chemical Bonding. Mir, oscow, 296 p. (1974). (in Russian).

74. Moshfegh A.Z. Nanoparticle catalysts. J.Phys. D:Appl.Phys., 42(23), P. 233001 (2009).

75. Miller J.T., Krops A.J., Zha Y., Regalluto J.R., L.Delannoy, C.Louis, Bus E., Bokhoven J.A. The effect of gold particle size on Au-Au bond length and toward oxygen in supported catalysts. J.Catal., 240, P. 222–234 (2006).


Review

For citations:


Oksengendler B.L., Askarov B., Nurgaliyev I.N., Maksimov S.E., Nikiforov V.N. Nanocatalysis: hypothesis on the action mechanism of gold. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(2):249-261. https://doi.org/10.17586/2220-8054-2015-6-2-249-261

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)